Computads for Weak ω -Categories as an Inductive Type

Christopher J. Dean Eric Finster Ioannis Markakis ¹ David Reutter Jamie Vicary

TACL 2022

¹The speaker is being partially supported by the Onassis Foundation - Scholarship ID: F ZQ 039-1/2020-2021 ONASSIS FOUNDATION Globular Sets and Trees

2 Computads and weak ω -categories

3 Consequences of our Definition

Globular Sets

Definition

The category \mathbb{G} of globes has objects natural numbers and morphisms generated by cosource and cotarget inclusions $s, t : [n] \rightarrow [n+1]$ under the globularity relations

$$s \circ s = t \circ s$$
 $s \circ t = t \circ t$

Definition

The category \mathbb{G} of globes has objects natural numbers and morphisms generated by cosource and cotarget inclusions $s, t : [n] \rightarrow [n+1]$ under the globularity relations

$$s \circ s = t \circ s$$
 $s \circ t = t \circ t$

- The category of *globular sets* is the presheaf category [G^{op}, Set]
- For a globular set X, we call elements of X_n the *n*-cells of X and visualise them (with their sources and targets) as follows:

Strict ω -categories

Definition

A strict ω -category is a globular set X equipped with composition and identity operations

$$egin{array}{lll} \circ_k : X_n imes_{X_k} X_n o X_n & (0 \leq k < n) \ {
m id} : X_n o X_{n+1} & (n \in \mathbb{N}) \end{array}$$

satisfying certain associativity, unitality and interchange laws.

Strict ω -categories

Definition

A strict ω -category is a globular set X equipped with composition and identity operations

$$egin{array}{lll} \circ_k : X_n imes_{X_k} X_n o X_n & (0 \leq k < n) \ {
m id} : X_n o X_{n+1} & (n \in \mathbb{N}) \end{array}$$

satisfying certain associativity, unitality and interchange laws.

It follows by the definition of strict ω -categories that certain diagrams of cells, can be composed in a unique way.

Definition

The set Tree of Batanin trees is generated inductively by one constructor

 $\mathsf{bt}:\mathsf{List}(\mathsf{Tree})\to\mathsf{Tree}$

- We also construct inductively for every Batanin tree *B* a finite globular sets Pos *B*, whose cells we call positions.
- Those globular sets are also known as *globular sums*.
- They will be the arities of the operations of our weak ω -categories.

Example

The disks and composable 1-arrows may be defined inductively as follows:

$$D_0 = bt[]$$
 $D_{n+1} = bt[D_n]$ $B_{1,n} = bt[D_0, D_0, \dots, D_0]$

Every globular set freely generates a (strict / weak) ω -category, but we can also generate ω -categories by more general shapes

Every globular set freely generates a (strict / weak) ω -category, but we can also generate ω -categories by more general shapes

We will define for every $n \in \mathbb{N}$ a category Comp_n of *n*-computads together with

• a truncation functor $u_n : \operatorname{Comp}_n \to \operatorname{Comp}_{n-1}$ (for n > 0),

Every globular set freely generates a (strict / weak) ω -category, but we can also generate ω -categories by more general shapes

We will define for every $n \in \mathbb{N}$ a category Comp_n of *n*-computads together with

- a truncation functor $u_n : \operatorname{Comp}_n \to \operatorname{Comp}_{n-1}$ (for n > 0),
- a functor $Cell_n : Comp_n \rightarrow Set$,

Every globular set freely generates a (strict / weak) ω -category, but we can also generate ω -categories by more general shapes

We will define for every $n \in \mathbb{N}$ a category Comp_n of *n*-computads together with

- a truncation functor $u_n : \operatorname{Comp}_n \to \operatorname{Comp}_{n-1}$ (for n > 0),
- a functor $\operatorname{Cell}_n : \operatorname{Comp}_n \to \operatorname{Set}$,
- natural transformations src, tgt : $\operatorname{Cell}_n \Rightarrow \operatorname{Cell}_{n-1} u_{n-1}$ (for n > 0),

Every globular set freely generates a (strict / weak) ω -category, but we can also generate ω -categories by more general shapes

We will define for every $n \in \mathbb{N}$ a category Comp_n of *n*-computads together with

- a truncation functor $u_n : \operatorname{Comp}_n \to \operatorname{Comp}_{n-1}$ (for n > 0),
- a functor $Cell_n : Comp_n \rightarrow Set$,
- natural transformations src, tgt : $\text{Cell}_n \Rightarrow \text{Cell}_{n-1} u_{n-1}$ (for n > 0),
- a distinguished *n*-computed Pd_n^B for every Batanin tree *B*,

Every globular set freely generates a (strict / weak) ω -category, but we can also generate ω -categories by more general shapes

We will define for every $n \in \mathbb{N}$ a category Comp_n of *n*-computads together with

- a truncation functor $u_n : \operatorname{Comp}_n \to \operatorname{Comp}_{n-1}$ (for n > 0),
- a functor $Cell_n : Comp_n \rightarrow Set$,
- natural transformations src, tgt : $\text{Cell}_n \Rightarrow \text{Cell}_{n-1} u_{n-1}$ (for n > 0),
- a distinguished *n*-computed Pd_n^B for every Batanin tree *B*,
- a set $\operatorname{Full}_n(B)$ of pairs of parallel cells of Pd_n^B .

Computads and Homomorphisms

Definition

- A 0-computad is a set.
- An (n+1)-computed C consists of
 - an *n*-computad C_{n-1} ,
 - a set of generators V_{n+1}^C ,
 - a function ϕ_n^C assigning to each generator a pair of parallel cells of C_n .
- A computed $C = (C_n)_{n \in \mathbb{N}}$ consists of *n*-computed for every *n* such that $u_{n+1}C_{n+1} = C_n$.

Computads and Homomorphisms

Definition

- A 0-computad is a set.
- An (n+1)-computed C consists of
 - an *n*-computad C_{n-1} ,
 - a set of generators V_{n+1}^C ,
 - a function ϕ_n^C assigning to each generator a pair of parallel cells of C_n .
- A computed $C = (C_n)_{n \in \mathbb{N}}$ consists of *n*-computed for every *n* such that $u_{n+1}C_{n+1} = C_n$.

Definition

- A 0-homomorphism is a function.
- An (n+1)-homomorphism $C \to D$ consists
 - an *n*-homomorphism $C_n \rightarrow D_n$ and
 - a function $V_n^C \to \operatorname{Cell}_{n+1} D$ commuting with source and target.
- A homomorphism is a compatible sequence of *n*-homomorphisms.

Definition

- The set of cells of a 0-computed C is C.
- The set of cells of an (n+1)-computed C is generated inductively by
 - There exists a cell (var v) for every generator $v \in V_n^C$.
 - There exists a cell $\operatorname{coh}(B, (a, b), \tau)$ for every tree of dimension at most n + 1, every full pair of parallel *n*-cells of it and every homomorphism $\tau : \operatorname{Pd}_{n+1}^B \to C$.

The source of positive dimensional cells are defined recursively by the following formulas, while the target is defined similarly

$$\mathsf{src}(\mathsf{var} \ v) = \mathsf{pr}_1 \phi_n^{\mathsf{C}}(v)$$

 $\mathsf{src}(\mathsf{coh}(B, (a, b), \tau)) = \mathsf{Cell}_{n-1}(u_n \tau)(a)$

Remark

This construction defines a functor Cell : Comp \rightarrow Glob.

Ioannis Markakis

Computads for Weak ω -Categories

The Pasting Diagrams

Definition

Let B a Batanin tree. The distinguished *n*-computed Pd_n^B is defined by

• $\operatorname{Pd}_{0}^{B} = \operatorname{Pos}_{0} B$ • $\operatorname{Pd}_{n+1}^{B} = (\operatorname{Pd}_{n}^{B}, \operatorname{Pos}_{n+1} B, \phi_{n+1}^{B})$ where $\phi_{n+1}^{B}(p) = (\operatorname{var}\operatorname{src} p, \operatorname{var}\operatorname{tgt} p)$ • $\operatorname{Pd}^{B} = (\operatorname{Pd}_{n}^{B})_{n \in \mathbb{N}}$

We will say that a pair of parallel cells $(a, b) \in \text{Cell}_n(B)$ is full when a and b cover the n-dimensional source and target of B respectively.

Remark

This construction generalises to an embedding Cptd : $\mathsf{Glob} \to \mathsf{Comp}$.

• Consider the following two 1-computads

• Consider the following two 1-computads

• Consider the following two 1-computads

$$x \xrightarrow{f} y \xrightarrow{g} z$$

Figure: Pd^{B1,2}

• Consider the following two 1-computads

$$x \xrightarrow{f} y \xrightarrow{g} z \qquad x' \xrightarrow{f'} y' \xrightarrow{g'} z' \xrightarrow{h'} w'$$
Figure: $\operatorname{Pd}^{B_{1,2}}$
Figure: $\operatorname{Pd}^{B_{1,3}}$

• Consider the following two 1-computads

$$x \xrightarrow{f} y \xrightarrow{g} z \qquad \qquad x' \xrightarrow{f'} y' \xrightarrow{g'} z' \xrightarrow{h'} w'$$

Figure: Pd^{B_{1,2} Figure: Pd^{B_{1,3}}}

 The pair (x, z) covers the 0-dimensional boundary of B_{1,2}, so we get a cell g ∘ f = coh(B_{1,2}, (x, z), id).

• Consider the following two 1-computads

- The pair (x, z) covers the 0-dimensional boundary of B_{1,2}, so we get a cell g ∘ f = coh(B_{1,2}, (x, z), id).
- By substitution, we may define cells $h' \circ (g' \circ f')$ and $(h' \circ g') \circ f'$ over $Pd^{B_{1,3}}$.

• Consider the following two 1-computads

$$x \xrightarrow{f} y \xrightarrow{g} z \qquad x' \xrightarrow{f'} y' \xrightarrow{g'} z' \xrightarrow{h'} w'$$
Figure: $Pd^{B_{1,2}}$
Figure: $Pd^{B_{1,3}}$

- The pair (x, z) covers the 0-dimensional boundary of B_{1,2}, so we get a cell g ∘ f = coh(B_{1,2}, (x, z), id).
- By substitution, we may define cells $h' \circ (g' \circ f')$ and $(h' \circ g') \circ f'$ over $Pd^{B_{1,3}}$.
- Both cells cover the 1-dimensional boundary of $B_{1,3}$, which is $B_{1,3}$ itself, so we have similarly a 2-cell

$$\mathsf{assoc}_{f',g',h'}:h'\circ(g'\circ f')\Rightarrow(h'\circ g')\circ f'$$

and one in the opposite direction.

The functor Cptd : Glob \rightarrow Comp is left adjoint to Cell.

Definition

An ω -category is an algebra for $fc^w = Cell Cptd$.

The functor Cptd : Glob \rightarrow Comp is left adjoint to Cell.

Definition

An ω -category is an algebra for $fc^w = Cell Cptd$.

The functor Cptd : Glob \rightarrow Comp is left adjoint to Cell.

Definition

An ω -category is an algebra for $fc^w = Cell Cptd$.

Proposition

Computads embed fully faithfully into ω Cat.

The functor Cptd : Glob \rightarrow Comp is left adjoint to Cell.

Definition

An ω -category is an algebra for $fc^w = Cell Cptd$.

Proposition

Computads embed fully faithfully into ω Cat.

Theorem

fc^w is the initial contractible globular operad.

- Morphisms of computads sending variables to variables form a subcategory Comp^{var} of Comp.
- We inductively construct a family of computads J(c) indexed by cells of the terminal computad such that

$$\operatorname{Cell}_n \cong \coprod_{c \in \operatorname{Cell}_n(1)} \operatorname{Comp}^{\operatorname{var}}(J(c), -)$$

• Let \mathcal{V} the full subcategory of Comp^{var} on the computads of the form J(var v).

Theorem

$$\mathsf{Comp}^{\mathsf{var}} \cong [\mathcal{V}^{\mathsf{op}},\mathsf{Set}]$$

Theorem

The ω -category free on a computed $C = (C_n)$ is the colimit of the ones free on C_n , which fit in pushout squares of the form

In particular, free ω -categories are cofibrant for $I = \{\mathbb{S}^{n-1} \hookrightarrow \mathbb{D}^n\}$.

- We can build a right adjoint W : ωCat → Comp^{var} to the free computad functor, hence a comonad Q on ωCat.
- Using a recognition principle of Garner, we see that this is the universal cofibrant replacement comonad.

- M. A. Batanin. "Computads for finitary monads on globular sets". In: *Higher category theory*. Vol. 230. Amer. Math. Soc., 1998.
- [2] E. Finster and S. Mimram. "A type-theoretical definition of weak ω-categories". In: 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). IEEE. 2017, pp. 1–12.
- [3] R. Garner. "Homomorphisms of higher categories". In: Advances in Mathematics 224.6 (Aug. 2010), pp. 2269–2311.

Thank you!