# Computads for Weak $\omega$-Categories as an Inductive Type 

Christopher J. Dean Eric Finster loannis Markakis ${ }^{1}$<br>David Reutter Jamie Vicary

TACL 2022

## 숭ㅅ․ UNIVERSITY OF CAMBRIDGE

[^0]ONASSIS

## Overview

(1) Globular Sets and Trees
(2) Computads and weak $\omega$-categories
(3) Consequences of our Definition

## Globular Sets

## Definition

The category $\mathbb{G}$ of globes has objects natural numbers and morphisms generated by cosource and cotarget inclusions $s, t:[n] \rightarrow[n+1]$ under the globularity relations

$$
s \circ s=t \circ s \quad s \circ t=t \circ t
$$

## Globular Sets

## Definition

The category $\mathbb{G}$ of globes has objects natural numbers and morphisms generated by cosource and cotarget inclusions $s, t:[n] \rightarrow[n+1]$ under the globularity relations

$$
s \circ s=t \circ s \quad s \circ t=t \circ t
$$

- The category of globular sets is the presheaf category [ $\mathbb{G}^{\text {op }}$, Set]
- For a globular set $X$, we call elements of $X_{n}$ the $n$-cells of $X$ and visualise them (with their sources and targets) as follows:



## Strict $\omega$-categories

## Definition

A strict $\omega$-category is a globular set $X$ equipped with composition and identity operations

$$
\begin{array}{lr}
\circ_{k}: X_{n} \times X_{k} X_{n} \rightarrow X_{n} & (0 \leq k<n) \\
\text { id }: X_{n} \rightarrow X_{n+1} & (n \in \mathbb{N})
\end{array}
$$

satisfying certain associativity, unitality and interchange laws.

## Strict $\omega$-categories

## Definition

A strict $\omega$-category is a globular set $X$ equipped with composition and identity operations

$$
\begin{array}{lr}
\circ_{k}: X_{n} \times x_{k} X_{n} \rightarrow X_{n} & (0 \leq k<n) \\
\text { id }: X_{n} \rightarrow X_{n+1} & (n \in \mathbb{N})
\end{array}
$$

satisfying certain associativity, unitality and interchange laws.
It follows by the definition of strict $\omega$-categories that certain diagrams of cells, can be composed in a unique way.


## Batanin Trees

## Definition

The set Tree of Batanin trees is generated inductively by one constructor

$$
\text { bt : List(Tree) } \rightarrow \text { Tree }
$$

- We also construct inductively for every Batanin tree $B$ a finite globular sets Pos $B$, whose cells we call positions.
- Those globular sets are also known as globular sums.
- They will be the arities of the operations of our weak $\omega$-categories.


## Example

The disks and composable 1-arrows may be defined inductively as follows:

$$
D_{0}=\mathrm{bt}[] \quad D_{n+1}=\mathrm{bt}\left[D_{n}\right] \quad B_{1, n}=\mathrm{bt}\left[D_{0}, D_{0}, \ldots, D_{0}\right]
$$

## Computads for weak $\omega$-categories

Every globular set freely generates a (strict / weak) $\omega$-category, but we can also generate $\omega$-categories by more general shapes


## Computads for weak $\omega$-categories

Every globular set freely generates a (strict / weak) $\omega$-category, but we can also generate $\omega$-categories by more general shapes


We will define for every $n \in \mathbb{N}$ a category Comp $_{n}$ of $n$-computads together with

- a truncation functor $u_{n}: \operatorname{Comp}_{n} \rightarrow$ Comp $_{n-1}($ for $n>0)$,


## Computads for weak $\omega$-categories

Every globular set freely generates a (strict / weak) $\omega$-category, but we can also generate $\omega$-categories by more general shapes


We will define for every $n \in \mathbb{N}$ a category Comp $_{n}$ of $n$-computads together with

- a truncation functor $u_{n}:$ Comp $_{n} \rightarrow$ Comp $_{n-1}($ for $n>0)$,
- a functor Cell ${ }_{n}:$ Comp $_{n} \rightarrow$ Set,


## Computads for weak $\omega$-categories

Every globular set freely generates a (strict / weak) $\omega$-category, but we can also generate $\omega$-categories by more general shapes


We will define for every $n \in \mathbb{N}$ a category Comp $_{n}$ of $n$-computads together with

- a truncation functor $u_{n}:$ Comp $_{n} \rightarrow$ Comp $_{n-1}($ for $n>0)$,
- a functor Cell ${ }_{n}:$ Comp $_{n} \rightarrow$ Set,
- natural transformations src, tgt : Cell ${ }_{n} \Rightarrow$ Cell $_{n-1} u_{n-1}($ for $n>0)$,


## Computads for weak $\omega$-categories

Every globular set freely generates a (strict / weak) $\omega$-category, but we can also generate $\omega$-categories by more general shapes


We will define for every $n \in \mathbb{N}$ a category Comp $_{n}$ of $n$-computads together with

- a truncation functor $u_{n}:$ Comp $_{n} \rightarrow$ Comp $_{n-1}($ for $n>0)$,
- a functor Cell ${ }_{n}:$ Comp $_{n} \rightarrow$ Set,
- natural transformations src, tgt : Cell ${ }_{n} \Rightarrow$ Cell $_{n-1} u_{n-1}($ for $n>0)$,
- a distinguished $n$-computad $\mathrm{Pd}_{n}^{B}$ for every Batanin tree $B$,


## Computads for weak $\omega$-categories

Every globular set freely generates a (strict / weak) $\omega$-category, but we can also generate $\omega$-categories by more general shapes


We will define for every $n \in \mathbb{N}$ a category Comp $_{n}$ of $n$-computads together with

- a truncation functor $u_{n}: \mathrm{Comp}_{n} \rightarrow \operatorname{Comp}_{n-1}($ for $n>0)$,
- a functor Cell ${ }_{n}:$ Comp $_{n} \rightarrow$ Set,
- natural transformations src, tgt : Cell ${ }_{n} \Rightarrow$ Cell $_{n-1} u_{n-1}($ for $n>0)$,
- a distinguished $n$-computad $\mathrm{Pd}_{n}^{B}$ for every Batanin tree $B$,
- a set $\operatorname{Full}_{n}(B)$ of pairs of parallel cells of $\mathrm{Pd}_{n}^{B}$.


## Computads and Homomorphisms

## Definition

- A 0-computad is a set.
- An $(n+1)$-computad $C$ consists of
- an $n$-computad $C_{n-1}$,
- a set of generators $V_{n+1}^{C}$,
- a function $\phi_{n}^{C}$ assigning to each generator a pair of parallel cells of $C_{n}$.
- A computad $C=\left(C_{n}\right)_{n \in \mathbb{N}}$ consists of $n$-computad for every $n$ such that $u_{n+1} C_{n+1}=C_{n}$.


## Computads and Homomorphisms

## Definition

- A 0-computad is a set.
- An $(n+1)$-computad $C$ consists of
- an n-computad $C_{n-1}$,
- a set of generators $V_{n+1}^{C}$,
- a function $\phi_{n}^{C}$ assigning to each generator a pair of parallel cells of $C_{n}$.
- A computad $C=\left(C_{n}\right)_{n \in \mathbb{N}}$ consists of $n$-computad for every $n$ such that $u_{n+1} C_{n+1}=C_{n}$.


## Definition

- A 0-homomorphism is a function.
- An $(n+1)$-homomorphism $C \rightarrow D$ consists
- an n-homomorphism $C_{n} \rightarrow D_{n}$ and
- a function $V_{n}^{C} \rightarrow$ Cell $_{n+1} D$ commuting with source and target.
- A homomorphism is a compatible sequence of $n$-homomorphisms.


## The Cells of a Computad

## Definition

- The set of cells of a 0 -computad $C$ is $C$.
- The set of cells of an $(n+1)$-computad $C$ is generated inductively by
- There exists a cell ( $\operatorname{var} v$ ) for every generator $v \in V_{n}^{C}$.
- There exists a cell $\operatorname{coh}(B,(a, b), \tau)$ for every tree of dimension at most $n+1$, every full pair of parallel $n$-cells of it and every homomorphism $\tau: \mathrm{Pd}_{n+1}^{B} \rightarrow C$.

The source of positive dimensional cells are defined recursively by the following formulas, while the target is defined similarly

$$
\begin{aligned}
\operatorname{src}(\operatorname{var} v) & =\mathrm{pr}_{1} \phi_{n}^{C}(v) \\
\operatorname{src}(\operatorname{coh}(B,(a, b), \tau)) & =\operatorname{Cell}_{n-1}\left(u_{n} \tau\right)(a)
\end{aligned}
$$

## Remark

This construction defines a functor Cell : Comp $\rightarrow$ Glob.

## The Pasting Diagrams

## Definition

Let $B$ a Batanin tree. The distinguished $n$-computad $\mathrm{Pd}_{n}^{B}$ is defined by

- $\mathrm{Pd}_{0}^{B}=\operatorname{Pos}_{0} B$
- $\operatorname{Pd}_{n+1}^{B}=\left(\operatorname{Pd}_{n}^{B}, \operatorname{Pos}_{n+1} B, \phi_{n+1}^{B}\right)$ where

$$
\phi_{n+1}^{B}(p)=(\operatorname{var} \operatorname{src} p, \operatorname{var} \operatorname{tgt} p)
$$

- $\mathrm{Pd}^{B}=\left(\mathrm{Pd}_{n}^{B}\right)_{n \in \mathbb{N}}$

We will say that a pair of parallel cells $(a, b) \in$ Cell $_{n}(B)$ is full when $a$ and $b$ cover the $n$-dimensional source and target of $B$ respectively.

## Remark

This construction generalises to an embedding Cptd : Glob $\rightarrow$ Comp.

## Example: Low Dimensional Composition and Associators

- Consider the following two 1-computads


## Example: Low Dimensional Composition and Associators

- Consider the following two 1-computads


## Example: Low Dimensional Composition and Associators

- Consider the following two 1-computads

$$
x \xrightarrow{f} y \xrightarrow{g} z
$$

Figure: $\mathrm{Pd}^{B_{1,2}}$

## Example: Low Dimensional Composition and Associators

- Consider the following two 1-computads

$$
x \xrightarrow{f} y \xrightarrow{g} z
$$

Figure: $\mathrm{Pd}^{B_{1,2}}$
$x^{\prime} \xrightarrow{f^{\prime}} y^{\prime} \xrightarrow{g^{\prime}} z^{\prime} \xrightarrow{h^{\prime}} w^{\prime}$
Figure: $\mathrm{Pd}^{B_{1,3}}$

## Example: Low Dimensional Composition and Associators

- Consider the following two 1-computads

$$
x \xrightarrow{f} y \xrightarrow{g} z
$$

Figure: $\mathrm{Pd}^{B_{1,2}}$


Figure: $\mathrm{Pd}^{B_{1,3}}$

- The pair $(x, z)$ covers the 0 -dimensional boundary of $B_{1,2}$, so we get a cell $g \circ f=\operatorname{coh}\left(B_{1,2},(x, z)\right.$, id $)$.


## Example: Low Dimensional Composition and Associators

- Consider the following two 1-computads

$$
x \xrightarrow{f} y \xrightarrow{g} z
$$

Figure: $\mathrm{Pd}^{B_{1,2}}$

$$
x^{\prime} \xrightarrow{f^{\prime}} y^{\prime} \xrightarrow{g^{\prime}} z^{\prime} \xrightarrow{h^{\prime}} w^{\prime}
$$

Figure: $\mathrm{Pd}^{B_{1,3}}$

- The pair $(x, z)$ covers the 0 -dimensional boundary of $B_{1,2}$, so we get a cell $g \circ f=\operatorname{coh}\left(B_{1,2},(x, z)\right.$, id $)$.
- By substitution, we may define cells $h^{\prime} \circ\left(g^{\prime} \circ f^{\prime}\right)$ and $\left(h^{\prime} \circ g^{\prime}\right) \circ f^{\prime}$ over $\mathrm{Pd}^{B_{1,3}}$.


## Example: Low Dimensional Composition and Associators

- Consider the following two 1-computads

$$
x \xrightarrow{f} y \xrightarrow{g} z
$$

$$
x^{\prime} \xrightarrow{f^{\prime}} y^{\prime} \xrightarrow{g^{\prime}} z^{\prime} \xrightarrow{h^{\prime}} w^{\prime}
$$

Figure: $\mathrm{Pd}^{B_{1,2}}$
Figure: $\mathrm{Pd}^{B_{1,3}}$

- The pair $(x, z)$ covers the 0 -dimensional boundary of $B_{1,2}$, so we get a cell $g \circ f=\operatorname{coh}\left(B_{1,2},(x, z)\right.$, id $)$.
- By substitution, we may define cells $h^{\prime} \circ\left(g^{\prime} \circ f^{\prime}\right)$ and $\left(h^{\prime} \circ g^{\prime}\right) \circ f^{\prime}$ over $\mathrm{Pd}^{B_{1,3}}$.
- Both cells cover the 1 -dimensional boundary of $B_{1,3}$, which is $B_{1,3}$ itself, so we have similarly a 2 -cell

$$
\operatorname{assoc}_{f^{\prime}, g^{\prime}, h^{\prime}}: h^{\prime} \circ\left(g^{\prime} \circ f^{\prime}\right) \Rightarrow\left(h^{\prime} \circ g^{\prime}\right) \circ f^{\prime}
$$

and one in the opposite direction.

## $\omega$-categories

## Proposition

The functor Cptd : Glob $\rightarrow$ Comp is left adjoint to Cell.

## Definition

An $\omega$-category is an algebra for $\mathrm{fc}^{\omega}=$ Cell Cptd.

## $\omega$-categories

## Proposition

The functor Cptd : Glob $\rightarrow$ Comp is left adjoint to Cell.

## Definition

An $\omega$-category is an algebra for $\mathrm{fc}^{w}=$ Cell Cptd.


Comp $\xrightarrow[K^{w}]{ } \omega$ Cat

## $\omega$-categories

## Proposition

The functor Cptd : Glob $\rightarrow$ Comp is left adjoint to Cell.

## Definition

An $\omega$-category is an algebra for $\mathrm{fc}^{w}=$ Cell Cptd.


## Proposition

Computads embed fully faithfully into $\omega$ Cat.

## $\omega$-categories

## Proposition

The functor Cptd : Glob $\rightarrow$ Comp is left adjoint to Cell.

## Definition

An $\omega$-category is an algebra for $\mathrm{fc}^{w}=$ Cell Cptd.


## Proposition

Computads embed fully faithfully into $\omega$ Cat.

## Theorem

$\mathrm{fc}^{w}$ is the initial contractible globular operad.

## The Variable-to-Variable Subcategory

- Morphisms of computads sending variables to variables form a subcategory Comp ${ }^{\text {var }}$ of Comp.
- We inductively construct a family of computads $J(c)$ indexed by cells of the terminal computad such that

$$
\text { Cell }_{n} \cong \coprod_{c \in \operatorname{Cell}_{n}(1)} \operatorname{Comp}^{\mathrm{var}}(J(c),-)
$$

- Let $\mathcal{V}$ the full subcategory of $C^{\text {Comp }}{ }^{\mathrm{var}}$ on the computads of the form $J(\operatorname{var} v)$.


## Theorem

$$
\text { Comp }{ }^{\text {var }} \cong\left[\mathcal{V}^{\mathrm{op}}, \text { Set }\right]
$$

## Computads are Cellular Objects

## Theorem

The $\omega$-category free on a computad $C=\left(C_{n}\right)$ is the colimit of the ones free on $C_{n}$, which fit in pushout squares of the form


In particular, free $\omega$-categories are cofibrant for $I=\left\{\mathbb{S}^{n-1} \hookrightarrow \mathbb{D}^{n}\right\}$.

- We can build a right adjoint $W: \omega$ Cat $\rightarrow$ Comp ${ }^{\text {var }}$ to the free computad functor, hence a comonad $Q$ on $\omega$ Cat.
- Using a recognition principle of Garner, we see that this is the universal cofibrant replacement comonad.


## References

[1] M. A. Batanin. "Computads for finitary monads on globular sets". In: Higher category theory. Vol. 230. Amer. Math. Soc., 1998.
[2] E. Finster and S. Mimram. "A type-theoretical definition of weak $\omega$-categories". In: 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). IEEE. 2017, pp. 1-12.
[3] R. Garner. "Homomorphisms of higher categories". In: Advances in Mathematics 224.6 (Aug. 2010), pp. 2269-2311.

## Thank you!


[^0]:    ${ }^{1}$ The speaker is being partially supported by the Onassis Foundation - Scholarship ID: F ZQ 039-1/2020-2021

