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Free Algebras

Question

What does it mean for a mathematical structure to be free?

C AlgM
FM

UM

FrM

UndM

Structures are M-algebras and free
are in the image of FM.

For some M, there are more general
generating data for free algebras.

Free strict 2-category monad2

Free ω-category monad3

Monads on globular sets3

Monads over other presheaf topoi
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Computads for 2-categories

X2

X1

X0

s t

s t

s ts t

s ts t

var

var

s

t

s

t

A 2-graph X is a diagram satisfying
the globularity conditions

ss = st ts = tt

where X ∗
1 is the set of formal

composites from X1.

• • • • •

The free 2-category on X consists
of formal composite and coherence
cells quotiented by the laws of
2-categories.
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Free Monads

Question

Monads are mathematical structures. When is a monad free?

Idea

It should correspond to a theory with no equations when C = [Iop,Set].

weak ω-categories

algebraic Kan complexes / quasicategories

Definition

A signature4 over C = [Iop, Set] is a presheaf Σ ∈ C of function symbols
with arity functions B• : Σi → ob C compatible with morphisms in I.
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Algebras of a signature

Definition

A Σ-algebra X is a presheaf X equipped with functions

f X : C(Bf ,X ) → Xi

for f ∈ Σi compatible, satisfying that (δ∗f )X = δ∗f X for δ : j → i .

The forgetful functor UΣ : AlgΣ → C is strict monadic.

The free monad on Σ is MΣ = UΣ FΣ.

Problem

Weak ω-categories are not algebras of a signature, since the source of the
associator is not an 1-dimensional function symbol, but a composite of
them.
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Direct Categories

Definition

A direct category I is a small category equipped with a dimension function
dim : ob I → Ord to the class of ordinals such that dim j < dim i for every
non-identity morphism δ : j → i .

Example

Any discrete category S .

The category G of globes

The category ∆inj of simplices and face maps.

[0] [1] [2] · · ·
s

t

s

t

s

t

ss = ts

st = tt
[0] [1] [2] · · ·

δ0

δ1

δ0

δ2

δ0

δ3

δiδj = δj+1δi (i ≤ j)

Notation

We denote by Iα the full subcategory on objects of dimension at most α
with the obvious dimension function.
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The inductive data

We define by transfinite recursion on α ≤ sup{dim i : i ∈ I}

a class Sigα(I) of (generalised) signatures of dimension α,

restriction functions Sigα(I)
(−)β−−−→ Sigβ(I) for β < α

an adjunction for every signature Σ of dimension α

[Iop
α , Set] CompΣ

CptdΣ

TermΣ

truncation functors CompΣ
trΣβ−−→ CompΣβ

for every β < α
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Signatures

Definition

A signature Σ of dimension α consists of

signatures Σβ for β < α such that (Σβ)γ = Σγ ,

sets Σi of function symbols for dim i = α,

for every function symbol f ∈ Σi ,

an arity Bf ∈ [Iop,Set]
for non-identity δ : j → i , a boundary term

δ∗f ∈ TermΣdim j ,j CptdΣdim j
(trdim j Bf )

compatible with morphisms in I.

The restriction functions are the obvious projections.
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Computads

Definition

A Σ-computad C consists of

Σβ-computads Cβ for β < α such that tr
Σβ
γ Cβ = Cγ ,

a set V C
i of generators for dim i = α,

gluing functions V C
i → TermΣdim j ,j(Cdim j) for non-identity δ : j → i

copmatible with morphisms in I.

Each presheaf X : Iop
α → Set defines a computad where the sets of

generators are given by
V

CptdΣ X
i = Xi

and the gluing functions by the functions δ∗ : Xi → Xj .
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Terms

Definition

The lower dimensional terms of a computad C are those of Cβ. The set of
terms TermΣ,i C for dim i = α is generated inductively by two rules:

There exists a term var v for every generator v ∈ V C
i .

There exists a term comp[f , τ ] for f ∈ Σi and τ : CptdΣ Bf → C

The boundaries of top dimensional terms are given by the gluing functions
and the chosen boundary terms of the function symbols:

δ∗(var v) = ϕC
δ (v)

δ∗(comp[f , τ ]) = TermΣdim j ,j(τdim j)(δ
∗f )
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Morphisms of computads

Definition

A morphism σ : D → C consists of

morphisms σβ : Dβ → Cβ for β < α such that tr
Σβ
γ σβ = σγ ,

functions σi : V
D
i → TermΣ,i (C ) for dim i = α satisfying for δ : j → i

that

VD
i TermΣ,i C

TermΣdim j ,j D TermΣdim j ,j C

σi

ϕD
δ δ∗

σdim j

We will say that σ : D → C is variable-to-variable when σβ are
variable-to-variable and σi factors via var.
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Composition

Composition and the action of a morphism σ : C → D on terms are
defined mutually recursiely. The action on terms is given by

TermΣ,i (σ)(var v) = σi (v)

TermΣ,i (σ)(comp[f , τ ]) = comp[f , σ ◦ τ ].

Composition of morphisms is given by

σ ◦ τ = (σβ ◦ τβ,TermΣ,i (σ) ◦ τi )

Functoriality of TermΣ and associativity of composition are proven
mutually inductively. Identities are given by the inclusions var of variables
to terms.
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The term adjunction

The unit includes generators into terms

ηΣ,X : X → TermΣ CptdΣ X

x 7→ var x

The counit identifies terms with generators

εΣ,C : CptdΣ TermΣ C → C

εΣ,C ,β = ϵΣβ ,Cβ

εΣ,C ,i : V
CptdΣ TermΣ C
i = TermΣ C
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Algebras

Definition

The term monad (MΣ, ηΣ, µΣ) is the monad on [Iop
α ,Set] induced by the

term adjunction. The category AlgΣ is the category of MΣ-algebras.

Algebras X = (X , uX) are pairs of a presheaf and a morphism

uX : TermΣ CptdΣ X → X

satisfying two axioms. They gives rise for every f ∈ Σi to functions

f X : [Iop
α ,Set](Bf ,X ) → Xi

f X(τ) = uX(comp[f ,CptdΣ τ ])

and they are determined by them.
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Kan complexes

Notation

We will let ssSet = [∆op
inj, Set] and

∆[n] the representable semisimplicial set

∂∆[n] its boundary

Λk [n] its k-th horn

•

• •

Definition

An algebraic semisimplicial Kan complex X is a semisimplicial set X
together with for n > 0 and 0 ≤ k ≤ n a choice of lift for

Λk [n] X

∆[n]

σ

facek,n : ssSet(Λk [n],X ) → Xn−1

fillk,n : ssSet(Λk [n],X ) → Xn
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Kan Complexes

Kan complexes are algebras of a signature defined by

ΣKan,[n] = {facen+1,k : 0 ≤ k ≤ n + 1} ∪ {fillk,n : n > 0, 0 ≤ k ≤ n}

Bfacek,n+1
= Λk [n + 1] δ∗ facek,n+1 = var(δkδ)

Bfillk,n = Λk [n] δ∗ fillk,n =

{
facek,n, if δ = δk

var δ, otherwise.

Remark

Algebraic semisimplicial Kan complexes carry a model structure equivalent
to spaces5. We will discuss its cofibrations shortly.
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Algebraic semisimplicial Kan complexes carry a model structure equivalent
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5Bourke and Henry, Algebraically cofibrant and fibrant object revisited
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Globular Higher Categories

Definition

We let Glob = [Gop,Set] the category of globular sets. We let Bat the
family of globular sets representing the strict ω-category monad.

The signature Σω cat for weak ω-categories6

has no operations of dimension 0,

has as operations of dimension n + 1 triples
(B, a, b) where

B ∈ Bat of dimension at most n + 1,
a, b ∈ Termn(B) that “cover” the
n-dimensional source and target of B
respectively, and have common source and
target.

• • •

• • •

• • •
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Computads as presheaves

Lemma

The subcategory CompvarΣ of variable-to-variable morphisms has a terminal
computad 1Σ.

Generators of the terminal computad represent the “shapes” of generators
in the sense that

V C
i

∼=
∐

p∈V 1Σ
i

CompvarΣ (|p| ,C ).

Theorem

Let PlexΣ the full subcategory of CompvarΣ on the computads |p|. The
subcategory inclusion induces an equivalence

CompvarΣ
∼= [PlexopΣ , Set]
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Free Algebras

[Iop,Set]

CompΣ AlgΣ

FΣ

UΣ

CptdΣTermΣ

KΣ

CptdvarΣ

FrΣ

UndΣ

KΣ is fully faithfull

CptdvarΣ is fully faithful

Morphisms FrΣ C → X
amount to functions

V C
i → Xi

compatible with the
gluing functions.
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Computads as cofibrant algebras

Let Di = FrΣ I(−, i) and ∂Di its boundary. The inclusions ∂Di
Σ ⊆ Di

Σ

cofibrantly generate a weak factorisation system on the category of
algebras.

Theorem

Free algebras on a computad are cofibrant.

Theorem

The comonad FrΣ UndΣ : AlgΣ → AlgΣ is the universal cofibrant
replacement7 of the wfs.

Remark

This is the (cofibration, trivial fibration) wfs for Kan complexes and for
strict ω-categories.

Ioannis Markakis Computads for generalised signatures
107th Peripatetic Seminar in Sheaves and Logic
23 / 23



Computads as cofibrant algebras

Let Di = FrΣ I(−, i) and ∂Di its boundary. The inclusions ∂Di
Σ ⊆ Di

Σ

cofibrantly generate a weak factorisation system on the category of
algebras.

Theorem

Free algebras on a computad are cofibrant.

Theorem

The comonad FrΣ UndΣ : AlgΣ → AlgΣ is the universal cofibrant
replacement7 of the wfs.

Remark

This is the (cofibration, trivial fibration) wfs for Kan complexes and for
strict ω-categories.

Ioannis Markakis Computads for generalised signatures
107th Peripatetic Seminar in Sheaves and Logic
23 / 23



Computads as cofibrant algebras

Let Di = FrΣ I(−, i) and ∂Di its boundary. The inclusions ∂Di
Σ ⊆ Di

Σ

cofibrantly generate a weak factorisation system on the category of
algebras.

Theorem

Free algebras on a computad are cofibrant.

Theorem

The comonad FrΣ UndΣ : AlgΣ → AlgΣ is the universal cofibrant
replacement7 of the wfs.

Remark

This is the (cofibration, trivial fibration) wfs for Kan complexes and for
strict ω-categories.

7Garner, “Homomorphisms of higher categories”
Ioannis Markakis Computads for generalised signatures

107th Peripatetic Seminar in Sheaves and Logic
23 / 23



Computads as cofibrant algebras

Let Di = FrΣ I(−, i) and ∂Di its boundary. The inclusions ∂Di
Σ ⊆ Di

Σ

cofibrantly generate a weak factorisation system on the category of
algebras.

Theorem

Free algebras on a computad are cofibrant, and vice versa.

Theorem

The comonad FrΣ UndΣ : AlgΣ → AlgΣ is the universal cofibrant
replacement7 of the wfs.

Remark

This is the (cofibration, trivial fibration) wfs for Kan complexes and for
strict ω-categories.

7Garner, “Homomorphisms of higher categories”
Ioannis Markakis Computads for generalised signatures

107th Peripatetic Seminar in Sheaves and Logic
23 / 23



References

Batanin, M. A. “Computads for finitary monads on globular sets”. In:
Higher Category Theory. Vol. 230. Contemporary Mathematics.
American Mathematical Society, 1998.
Bourke, J. and R. Garner. “Monads and theories”. In: Advances in
Mathematics 351 (2019). arXiv: 1805.04346.
Bourke, J. and S. Henry. Algebraically cofibrant and fibrant object
revisited. 2020. arXiv: 2005.05384.
Dean, C. J., E. Finster, I. Markakis, D. Reutter, and J. Vicary.
Computads for weak ω-categories as an inductive type. 2022. arXiv:
2208.08719.
Garner, R. “Homomorphisms of higher categories”. In: Advances in
Mathematics 224.6 (2010). arXiv: 0810.4450.
Street, R. “Limits indexed by category-valued 2-functors”. In: Journal
of Pure and Applied Algebra 8.2 (1976).

Ioannis Markakis Computads for generalised signatures
107th Peripatetic Seminar in Sheaves and Logic
23 / 23

https://arxiv.org/abs/1805.04346
https://arxiv.org/abs/2005.05384
https://arxiv.org/abs/2208.08719
https://arxiv.org/abs/0810.4450

	Motivation
	Definitions
	Examples
	Results
	References

