## Computads for generalised signatures

Ioannis Markakis<sup>1</sup>

107th Peripatetic Seminar in Sheaves and Logic



### ONASSIS FOUNDATION

<sup>1</sup>The speaker is being partially supported by the Onassis Foundation Scholarship ID: F ZQ 039-1/2020-2021 The presentation is based on arXiv:2303.11978









What does it mean for a mathematical structure to be free?

What does it mean for a mathematical structure to be free?



 $\bullet\,$  Structures are M-algebras and free are in the image of  $F_M.$ 

2/23

What does it mean for a mathematical structure to be free?



- $\bullet\,$  Structures are M-algebras and free are in the image of  $F_M.$
- For some M, there are more general generating data for free algebras.

What does it mean for a mathematical structure to be free?



- $\bullet\,$  Structures are M-algebras and free are in the image of  $F_M.$
- For some M, there are more general generating data for free algebras.
  - Free strict 2-category monad<sup>2</sup>

<sup>&</sup>lt;sup>2</sup>Street, "Limits indexed by category-valued 2-functors"

What does it mean for a mathematical structure to be free?



- $\bullet\,$  Structures are M-algebras and free are in the image of  $F_{M}.$
- For some M, there are more general generating data for free algebras.
  - Free strict 2-category monad<sup>2</sup>
  - Free  $\omega$ -category monad<sup>3</sup>

<sup>3</sup>Batanin, "Computads for finitary monads on globular sets"

Ioannis Markakis

<sup>&</sup>lt;sup>2</sup>Street, "Limits indexed by category-valued 2-functors"

What does it mean for a mathematical structure to be free?



- $\bullet\,$  Structures are M-algebras and free are in the image of  $F_M.$
- For some M, there are more general generating data for free algebras.
  - Free strict 2-category monad<sup>2</sup>
  - Free  $\omega$ -category monad<sup>3</sup>
  - Monads on globular sets<sup>3</sup>

<sup>3</sup>Batanin, "Computads for finitary monads on globular sets"

<sup>&</sup>lt;sup>2</sup>Street, "Limits indexed by category-valued 2-functors"

What does it mean for a mathematical structure to be free?



- $\bullet\,$  Structures are M-algebras and free are in the image of  $F_M.$
- For some M, there are more general generating data for free algebras.
  - Free strict 2-category monad<sup>2</sup>
  - Free  $\omega$ -category monad<sup>3</sup>
  - Monads on globular sets<sup>3</sup>
  - Monads over other presheaf topoi

<sup>3</sup>Batanin, "Computads for finitary monads on globular sets"

<sup>&</sup>lt;sup>2</sup>Street, "Limits indexed by category-valued 2-functors"

 $\begin{array}{c} X_2 \\ s \\ \downarrow t \\ X_1 \\ s \\ \downarrow t \\ X_0 \end{array}$ 

• A 2-graph X is a diagram satisfying the *globularity conditions* 

$$ss = st$$
  $ts = tt$ 





• A 2-graph X is a diagram satisfying the *globularity conditions* 

$$ss = st$$
  $ts = tt$ 

• The free 2-category on X consists of formal composite and coherence cells quotiented by the laws of 2-categories.









• A 2-graph X is a diagram satisfying the *globularity conditions* 

$$ss = st$$
  $ts = tt$ 







• A 2-computed X is a diagram satisfying the *globularity conditions* 

$$ss = st$$
  $ts = tt$ 

where  $X_1^*$  is the set of formal composites from  $X_1$ .

• The free 2-category on X consists of formal composite and coherence cells quotiented by the laws of 2-categories.



• A 2-computad X is a diagram satisfying the *globularity conditions* 

$$ss = st$$
  $ts = tt$ 

where  $X_1^*$  is the set of formal composites from  $X_1$ .

• The free 2-category on X consists of formal composite and coherence cells quotiented by the laws of 2-categories.

Monads are mathematical structures. When is a monad free?

Monads are mathematical structures. When is a monad free?

### ldea

It should correspond to a theory with no equations when  $\mathcal{C} = [\mathcal{I}^{op}, Set]$ .

- weak  $\omega$ -categories
- algebraic Kan complexes / quasicategories

Monads are mathematical structures. When is a monad free?

#### Idea

It should correspond to a theory with no equations when  $\mathcal{C} = [\mathcal{I}^{op}, Set]$ .

- weak  $\omega$ -categories
- algebraic Kan complexes / quasicategories

### Definition

A signature<sup>4</sup> over  $\mathcal{C} = [\mathcal{I}^{op}, Set]$  is a presheaf  $\Sigma \in \mathcal{C}$  of function symbols with arity functions  $\mathcal{B}_{\bullet} : \Sigma_i \to ob \mathcal{C}$  compatible with morphisms in  $\mathcal{I}$ .

<sup>&</sup>lt;sup>4</sup>Bourke and Garner, "Monads and theories"

# Algebras of a signature

#### Definition

A  $\Sigma$ -algebra X is a presheaf X equipped with functions

$$f^{\mathbb{X}}: \mathcal{C}(B_f, X) \to X_i$$

for  $f \in \Sigma_i$  compatible, satisfying that  $(\delta^* f)^{\mathbb{X}} = \delta^* f^{\mathbb{X}}$  for  $\delta : j \to i$ .

- The forgetful functor  $\mathsf{U}_\Sigma:\mathsf{Alg}_\Sigma\to \mathcal{C}$  is strict monadic.
- The free monad on  $\Sigma$  is  $M_{\Sigma} = U_{\Sigma} F_{\Sigma}$ .

# Algebras of a signature

#### Definition

A  $\Sigma$ -algebra X is a presheaf X equipped with functions

 $f^{\mathbb{X}}: \mathcal{C}(B_f, X) \to X_i$ 

for  $f \in \Sigma_i$  compatible, satisfying that  $(\delta^* f)^{\mathbb{X}} = \delta^* f^{\mathbb{X}}$  for  $\delta : j \to i$ .

- $\bullet$  The forgetful functor  $\mathsf{U}_\Sigma:\mathsf{Alg}_\Sigma\to \mathcal{C}$  is strict monadic.
- The free monad on  $\Sigma$  is  $M_{\Sigma} = U_{\Sigma} F_{\Sigma}$ .

#### Problem

Weak  $\omega$ -categories are not algebras of a signature, since the source of the associator is not an 1-dimensional function symbol, but a composite of them.

5/23









A direct category  $\mathcal{I}$  is a small category equipped with a dimension function dim : ob  $\mathcal{I} \rightarrow$  Ord to the class of ordinals such that dim  $j < \dim i$  for every non-identity morphism  $\delta : j \rightarrow i$ .

A direct category  $\mathcal{I}$  is a small category equipped with a dimension function dim : ob  $\mathcal{I} \rightarrow$  Ord to the class of ordinals such that dim  $j < \dim i$  for every non-identity morphism  $\delta : j \rightarrow i$ .

#### Example

• Any discrete category *S*.

A direct category  $\mathcal{I}$  is a small category equipped with a dimension function dim : ob  $\mathcal{I} \rightarrow$  Ord to the class of ordinals such that dim  $j < \dim i$  for every non-identity morphism  $\delta : j \rightarrow i$ .

#### Example

- Any discrete category S.
- The category  $\mathbb G$  of globes

$$[0] \xrightarrow{s}{t} [1] \xrightarrow{s}{t} [2] \xrightarrow{s}{t} \cdots \qquad ss = ts$$
$$st = tt$$

A direct category  $\mathcal{I}$  is a small category equipped with a dimension function dim : ob  $\mathcal{I} \rightarrow$  Ord to the class of ordinals such that dim  $j < \dim i$  for every non-identity morphism  $\delta : j \rightarrow i$ .

#### Example

- Any discrete category S.
- $\bullet$  The category  $\mathbb G$  of globes
- The category  $\Delta_{inj}$  of simplices and face maps.

$$[0] \xrightarrow[\delta_1]{\delta_0} [1] \xrightarrow[\delta_2]{\delta_0} [2] \xrightarrow[\delta_2]{\delta_1} \cdots$$

$$\delta_i \delta_j = \delta_{j+1} \delta_i \quad (i \leq j)$$

A direct category  $\mathcal{I}$  is a small category equipped with a dimension function dim : ob  $\mathcal{I} \rightarrow$  Ord to the class of ordinals such that dim  $j < \dim i$  for every non-identity morphism  $\delta : j \rightarrow i$ .

#### Example

- Any discrete category S.
- $\bullet$  The category  $\mathbb G$  of globes
- The category  $\Delta_{inj}$  of simplices and face maps.

#### Notation

We denote by  $\mathcal{I}_{\alpha}$  the full subcategory on objects of dimension at most  $\alpha$  with the obvious dimension function.

We define by transfinite recursion on  $\alpha \leq \sup\{\dim i \ : \ i \in \mathcal{I}\}$ 

• a class  $\operatorname{Sig}_{\alpha}(\mathcal{I})$  of (generalised) signatures of dimension  $\alpha$ ,

We define by transfinite recursion on  $\alpha \leq \sup\{\dim i : i \in \mathcal{I}\}$ 

- a class  $\operatorname{Sig}_{\alpha}(\mathcal{I})$  of (generalised) signatures of dimension  $\alpha$ ,
- restriction functions  $\operatorname{Sig}_{\alpha}(\mathcal{I}) \xrightarrow{(-)_{\beta}} \operatorname{Sig}_{\beta}(\mathcal{I})$  for  $\beta < \alpha$

We define by transfinite recursion on  $\alpha \leq \sup\{\dim i : i \in \mathcal{I}\}$ 

- a class  $\operatorname{Sig}_{\alpha}(\mathcal{I})$  of (generalised) signatures of dimension  $\alpha$ ,
- restriction functions  $\operatorname{Sig}_{\alpha}(\mathcal{I}) \xrightarrow{(-)_{\beta}} \operatorname{Sig}_{\beta}(\mathcal{I})$  for  $\beta < \alpha$
- an adjunction for every signature  $\Sigma$  of dimension  $\alpha$

$$[\mathcal{I}^{\mathsf{op}}_{\alpha},\mathsf{Set}] \xrightarrow[]{\frac{\mathsf{Cptd}_{\Sigma}}{\bot}}_{\mathsf{Term}_{\Sigma}} \mathsf{Comp}_{\Sigma}$$

We define by transfinite recursion on  $\alpha \leq \sup\{\dim i : i \in \mathcal{I}\}$ 

- a class  $\operatorname{Sig}_{\alpha}(\mathcal{I})$  of (generalised) signatures of dimension  $\alpha$ ,
- restriction functions  $\operatorname{Sig}_{\alpha}(\mathcal{I}) \xrightarrow{(-)_{\beta}} \operatorname{Sig}_{\beta}(\mathcal{I})$  for  $\beta < \alpha$
- an adjunction for every signature  $\Sigma$  of dimension  $\alpha$

$$[\mathcal{I}^{\mathsf{op}}_{\alpha},\mathsf{Set}] \xrightarrow[\mathsf{Term}_{\Sigma}]{\mathcal{I}} \mathsf{Comp}_{\Sigma}$$

• truncation functors  $\operatorname{Comp}_{\Sigma} \xrightarrow{\operatorname{tr}_{\beta}^{\Sigma}} \operatorname{Comp}_{\Sigma_{\beta}}$  for every  $\beta < \alpha$ 

A signature  $\pmb{\Sigma}$  of dimension  $\alpha$  consists of

• signatures  $\Sigma_{\beta}$  for  $\beta < \alpha$  such that  $(\Sigma_{\beta})_{\gamma} = \Sigma_{\gamma}$ ,

A signature  $\Sigma$  of dimension  $\alpha$  consists of

- signatures  $\Sigma_{\beta}$  for  $\beta < \alpha$  such that  $(\Sigma_{\beta})_{\gamma} = \Sigma_{\gamma}$ ,
- sets  $\Sigma_i$  of function symbols for dim  $i = \alpha$ ,

A signature  $\pmb{\Sigma}$  of dimension  $\alpha$  consists of

- signatures  $\Sigma_{\beta}$  for  $\beta < \alpha$  such that  $(\Sigma_{\beta})_{\gamma} = \Sigma_{\gamma}$ ,
- sets  $\Sigma_i$  of function symbols for dim  $i = \alpha$ ,
- for every function symbol  $f \in \Sigma_i$ ,

A signature  $\pmb{\Sigma}$  of dimension  $\alpha$  consists of

- signatures  $\Sigma_{\beta}$  for  $\beta < \alpha$  such that  $(\Sigma_{\beta})_{\gamma} = \Sigma_{\gamma}$ ,
- sets  $\Sigma_i$  of function symbols for dim  $i = \alpha$ ,
- for every function symbol  $f \in \Sigma_i$ ,
  - an arity  $B_f \in [\mathcal{I}^{op}, \mathsf{Set}]$

9/23

A signature  $\Sigma$  of dimension  $\alpha$  consists of

- signatures  $\Sigma_{\beta}$  for  $\beta < \alpha$  such that  $(\Sigma_{\beta})_{\gamma} = \Sigma_{\gamma}$ ,
- sets  $\Sigma_i$  of function symbols for dim  $i = \alpha$ ,
- for every function symbol  $f \in \Sigma_i$ ,
  - an arity  $B_f \in [\mathcal{I}^{op}, \mathsf{Set}]$
  - for non-identity  $\delta: j \rightarrow i,$  a boundary term

$$\delta^* f \in \operatorname{Term}_{\Sigma_{\dim j}, j} \operatorname{Cptd}_{\Sigma_{\dim j}}(\operatorname{tr}_{\dim j} B_f)$$

compatible with morphisms in  $\mathcal{I}$ .

The restriction functions are the obvious projections.

A  $\Sigma$ -computad C consists of

• 
$$\Sigma_{\beta}$$
-computads  $C_{\beta}$  for  $\beta < \alpha$  such that  $\operatorname{tr}_{\gamma}^{\Sigma_{\beta}} C_{\beta} = C_{\gamma}$ ,

- A  $\Sigma$ -computad C consists of
  - $\Sigma_{\beta}$ -computads  $C_{\beta}$  for  $\beta < \alpha$  such that  $\operatorname{tr}_{\gamma}^{\Sigma_{\beta}} C_{\beta} = C_{\gamma}$ ,
  - a set  $V_i^C$  of generators for dim  $i = \alpha$ ,

- A  $\Sigma$ -computad C consists of
  - $\Sigma_{\beta}$ -computads  $C_{\beta}$  for  $\beta < \alpha$  such that  $\operatorname{tr}_{\gamma}^{\Sigma_{\beta}} C_{\beta} = C_{\gamma}$ ,
  - a set  $V_i^C$  of generators for dim  $i = \alpha$ ,
  - gluing functions  $V_i^C \to \operatorname{Term}_{\Sigma_{\dim j}, j}(C_{\dim j})$  for non-identity  $\delta : j \to i$  copmatible with morphisms in  $\mathcal{I}$ .

A  $\Sigma$ -computad C consists of

- $\Sigma_{\beta}$ -computads  $C_{\beta}$  for  $\beta < \alpha$  such that  $\operatorname{tr}_{\gamma}^{\Sigma_{\beta}} C_{\beta} = C_{\gamma}$ ,
- a set  $V_i^C$  of generators for dim  $i = \alpha$ ,
- gluing functions  $V_i^{\mathcal{C}} \to \operatorname{Term}_{\Sigma_{\dim j}, j}(\mathcal{C}_{\dim j})$  for non-identity  $\delta : j \to i$  copmatible with morphisms in  $\mathcal{I}$ .

Each presheaf  $X : \mathcal{I}^{op}_{\alpha} \to \text{Set}$  defines a computed where the sets of generators are given by

$$V_i^{\operatorname{Cptd}_{\Sigma} X} = X_i$$

and the gluing functions by the functions  $\delta^* : X_i \to X_j$ .

The lower dimensional terms of a computed *C* are those of  $C_{\beta}$ . The set of terms  $\text{Term}_{\Sigma,i} C$  for dim  $i = \alpha$  is generated inductively by two rules:

- There exists a term var v for every generator  $v \in V_i^C$ .
- There exists a term  $\operatorname{comp}[f, \tau]$  for  $f \in \Sigma_i$  and  $\tau : \operatorname{Cptd}_{\Sigma} B_f \to C$

The boundaries of top dimensional terms are given by the gluing functions and the chosen boundary terms of the function symbols:

$$\delta^*(\operatorname{var} v) = \phi_{\delta}^{\mathsf{C}}(v)$$
  
 $\delta^*(\operatorname{comp}[f, \tau]) = \operatorname{Term}_{\Sigma_{\dim j}, j}(\tau_{\dim j})(\delta^* f)$ 

A morphism  $\sigma: D \to C$  consists of

- morphisms  $\sigma_{\beta}: D_{\beta} \to C_{\beta}$  for  $\beta < \alpha$  such that  $\operatorname{tr}_{\gamma}^{\Sigma_{\beta}} \sigma_{\beta} = \sigma_{\gamma}$ ,
- functions  $\sigma_i : V_i^D \to \operatorname{Term}_{\Sigma,i}(C)$  for dim  $i = \alpha$  satisfying for  $\delta : j \to i$  that

A morphism  $\sigma: D \to C$  consists of

- morphisms  $\sigma_{\beta}: D_{\beta} \to C_{\beta}$  for  $\beta < \alpha$  such that  $\operatorname{tr}_{\gamma}^{\Sigma_{\beta}} \sigma_{\beta} = \sigma_{\gamma}$ ,
- functions  $\sigma_i : V_i^D \to \operatorname{Term}_{\Sigma,i}(C)$  for dim  $i = \alpha$  satisfying for  $\delta : j \to i$  that

We will say that  $\sigma : D \to C$  is variable-to-variable when  $\sigma_{\beta}$  are variable-to-variable and  $\sigma_i$  factors via var.

Composition and the action of a morphism  $\sigma: C \to D$  on terms are defined mutually recursiely. The action on terms is given by

$$\mathsf{Term}_{\Sigma,i}(\sigma)(\mathsf{var}\,v) = \sigma_i(v)$$
$$\mathsf{Term}_{\Sigma,i}(\sigma)(\mathsf{comp}[f,\tau]) = \mathsf{comp}[f,\sigma\circ\tau].$$

Composition of morphisms is given by

$$\sigma \circ \tau = (\sigma_{\beta} \circ \tau_{\beta}, \operatorname{Term}_{\Sigma,i}(\sigma) \circ \tau_i)$$

Functoriality of  $\mathsf{Term}_\Sigma$  and associativity of composition are proven mutually inductively. Identities are given by the inclusions var of variables to terms.

• The unit includes generators into terms

 $\eta_{\Sigma,X}: X o \operatorname{\mathsf{Term}}_{\Sigma} \operatorname{\mathsf{Cptd}}_{\Sigma} X$  $x \mapsto \operatorname{var} x$  • The unit includes generators into terms

$$\eta_{\Sigma,X}: X o \operatorname{Term}_{\Sigma} \operatorname{Cptd}_{\Sigma} X$$
  
 $x \mapsto \operatorname{var} x$ 

• The counit identifies terms with generators

$$\begin{split} \varepsilon_{\Sigma,C} &: \mathsf{Cptd}_{\Sigma} \operatorname{Term}_{\Sigma} C \to C \\ \varepsilon_{\Sigma,C,\beta} &= \epsilon_{\Sigma_{\beta},C_{\beta}} \\ \varepsilon_{\Sigma,C,i} &: V_{i}^{\mathsf{Cptd}_{\Sigma} \operatorname{Term}_{\Sigma} C} = \operatorname{Term}_{\Sigma} C \end{split}$$

The term monad  $(M_{\Sigma}, \eta_{\Sigma}, \mu_{\Sigma})$  is the monad on  $[\mathcal{I}_{\alpha}^{op}, Set]$  induced by the term adjunction. The category Alg<sub> $\Sigma$ </sub> is the category of M<sub> $\Sigma$ </sub>-algebras.

The term monad  $(M_{\Sigma}, \eta_{\Sigma}, \mu_{\Sigma})$  is the monad on  $[\mathcal{I}_{\alpha}^{op}, Set]$  induced by the term adjunction. The category  $Alg_{\Sigma}$  is the category of  $M_{\Sigma}$ -algebras.

Algebras  $\mathbb{X} = (X, u^{\mathbb{X}})$  are pairs of a presheaf and a morphism

$$u^{\mathbb{X}}$$
 : Term <sub>$\Sigma$</sub>  Cptd <sub>$\Sigma$</sub>   $X \to X$ 

satisfying two axioms.

The term monad  $(M_{\Sigma}, \eta_{\Sigma}, \mu_{\Sigma})$  is the monad on  $[\mathcal{I}_{\alpha}^{op}, Set]$  induced by the term adjunction. The category  $Alg_{\Sigma}$  is the category of  $M_{\Sigma}$ -algebras.

Algebras  $\mathbb{X} = (X, u^{\mathbb{X}})$  are pairs of a presheaf and a morphism

$$u^{\mathbb{X}}$$
 : Term <sub>$\Sigma$</sub>  Cptd <sub>$\Sigma$</sub>   $X \to X$ 

satisfying two axioms. They gives rise for every  $f \in \Sigma_i$  to functions

$$f^{\mathbb{X}} : [\mathcal{I}^{\mathsf{op}}_{\alpha}, \mathsf{Set}](B_f, X) \to X_i$$
$$f^{\mathbb{X}}(\tau) = u^{\mathbb{X}}(\mathsf{comp}[f, \mathsf{Cptd}_{\Sigma} \tau])$$

and they are determined by them.









## Notation

We will let  $ssSet = [\Delta_{inj}^{op}, Set]$  and

•  $\Delta[n]$  the representable semisimplicial set



## Notation

We will let  $ssSet = [\Delta_{inj}^{op}, Set]$  and

- $\Delta[n]$  the representable semisimplicial set
- $\partial \Delta[n]$  its boundary



## Notation

We will let  $ssSet = [\Delta_{inj}^{op}, Set]$  and

- $\Delta[n]$  the representable semisimplicial set
- $\partial \Delta[n]$  its boundary
- $\Lambda^k[n]$  its k-th horn



#### Notation

We will let  $ssSet = [\Delta_{ini}^{op}, Set]$  and

- $\Delta[n]$  the representable semisimplicial set
- $\partial \Delta[n]$  its boundary
- $\Lambda^k[n]$  its k-th horn

### Definition

An algebraic semisimplicial Kan complex X is a semisimplicial set X together with for n > 0 and  $0 \le k \le n$  a choice of lift for

$$\begin{array}{cccc}
\Lambda^{k}[n] & \stackrel{\sigma}{\longrightarrow} X \\
\downarrow & & \\
\Delta[n]
\end{array}$$

#### Notation

We will let  $ssSet = [\Delta_{inj}^{op}, Set]$  and

- $\Delta[n]$  the representable semisimplicial set
- $\partial \Delta[n]$  its boundary
- $\Lambda^k[n]$  its k-th horn

### Definition

An algebraic semisimplicial Kan complex X is a semisimplicial set X together with for n > 0 and  $0 \le k \le n$  a choice of lift for

Kan complexes are algebras of a signature defined by

$$\Sigma_{\mathsf{Kan},[n]} = \{\mathsf{face}_{n+1,k} \ : \ 0 \le k \le n+1\} \cup \{\mathsf{fill}_{k,n} \ : \ n > 0, \ 0 \le k \le n\}$$

$$\begin{split} B_{\mathsf{face}_{k,n+1}} &= \Lambda^k[n+1] \qquad \delta^* \, \mathsf{face}_{k,n+1} = \mathsf{var}(\delta_k \delta) \\ B_{\mathsf{fill}_{k,n}} &= \Lambda^k[n] \qquad \delta^* \, \mathsf{fill}_{k,n} = \begin{cases} \mathsf{face}_{k,n}, & \text{if } \delta = \delta_k \\ \mathsf{var} \, \delta, & \text{otherwise.} \end{cases} \end{split}$$

Kan complexes are algebras of a signature defined by

$$\Sigma_{\mathsf{Kan},[n]} = \{\mathsf{face}_{n+1,k} \ : \ 0 \le k \le n+1\} \cup \{\mathsf{fill}_{k,n} \ : \ n > 0, \ 0 \le k \le n\}$$

$$\begin{split} B_{\mathsf{face}_{k,n+1}} &= \Lambda^k[n+1] & \delta^* \operatorname{face}_{k,n+1} = \operatorname{var}(\delta_k \delta) \\ B_{\mathsf{fill}_{k,n}} &= \Lambda^k[n] & \delta^* \operatorname{fill}_{k,n} = \begin{cases} \mathsf{face}_{k,n}, & \text{if } \delta = \delta_k \\ \operatorname{var} \delta, & \text{otherwise.} \end{cases} \end{split}$$

#### Remark

Algebraic semisimplicial Kan complexes carry a model structure equivalent to spaces<sup>5</sup>. We will discuss its cofibrations shortly.

<sup>&</sup>lt;sup>5</sup>Bourke and Henry, Algebraically cofibrant and fibrant object revisited

We let  $Glob = [\mathbb{G}^{op}, Set]$  the category of globular sets. We let Bat the family of globular sets representing the strict  $\omega$ -category monad.



We let  $Glob = [\mathbb{G}^{op}, Set]$  the category of globular sets. We let Bat the family of globular sets representing the strict  $\omega$ -category monad.

The signature  $\Sigma_{\omega \, cat}$  for weak  $\omega$ -categories<sup>6</sup>

- has no operations of dimension 0,
- has as operations of dimension n + 1 triples (B, a, b) where
  - $B \in Bat$  of dimension at most n + 1,
  - a, b ∈ Term<sub>n</sub>(B) that "cover" the n-dimensional source and target of B respectively, and have common source and target.



• 🐺 • 🐺 •

 $\bullet \underbrace{\swarrow}_{\Psi_{\mathbf{M}}} \bullet \underbrace{\swarrow}_{\Psi_{\mathbf{M}}} \bullet$ 









#### Lemma

The subcategory Comp $_{\Sigma}^{var}$  of variable-to-variable morphisms has a terminal computed  $\mathbb{1}_{\Sigma}$ .

Generators of the terminal computad represent the "shapes" of generators in the sense that

$$V_i^C \cong \coprod_{p \in V_i^{\mathbb{1}_{\Sigma}}} \operatorname{Comp}_{\Sigma}^{\operatorname{var}}(|p|, C).$$

#### Lemma

The subcategory Comp $_{\Sigma}^{var}$  of variable-to-variable morphisms has a terminal computed  $\mathbb{1}_{\Sigma}$ .

Generators of the terminal computad represent the "shapes" of generators in the sense that

$$V_i^C \cong \coprod_{p \in V_i^{\mathbb{1}_{\Sigma}}} \operatorname{Comp}_{\Sigma}^{\operatorname{var}}(|p|, C).$$

#### Theorem

Let  $Plex_{\Sigma}$  the full subcategory of  $Comp_{\Sigma}^{var}$  on the computads |p|. The subcategory inclusion induces an equivalence

 $\mathsf{Comp}^{\mathsf{var}}_{\Sigma}\cong[\mathsf{Plex}^{\mathsf{op}}_{\Sigma},\mathsf{Set}]$ 





•  $K_{\Sigma}$  is fully faithfull



- $\bullet~{\sf K}_{\Sigma}$  is fully faithfull
- Cptd $_{\Sigma}^{var}$  is fully faithful



- $\bullet~{\sf K}_{\Sigma}$  is fully faithfull
- Cptd $_{\Sigma}^{var}$  is fully faithful
- Morphisms  $\operatorname{Fr}_{\Sigma} C \to \mathbb{X}$ amount to functions

$$V_i^C \to X_i$$

compatible with the gluing functions.



- $\bullet~{\sf K}_{\Sigma}$  is fully faithfull
- Cptd $_{\Sigma}^{var}$  is fully faithful
- Morphisms  $\operatorname{Fr}_{\Sigma} C \to \mathbb{X}$ amount to functions

$$V_i^C \to X_i$$

compatible with the gluing functions.

Let  $\mathbb{D}^i = \operatorname{Fr}_{\Sigma} \mathcal{I}(-, i)$  and  $\partial \mathbb{D}^i$  its boundary. The inclusions  $\partial \mathbb{D}^i_{\Sigma} \subseteq \mathbb{D}^i_{\Sigma}$  cofibrantly generate a weak factorisation system on the category of algebras.

#### Remark

This is the (cofibration, trivial fibration) wfs for Kan complexes and for strict  $\omega$ -categories.

Let  $\mathbb{D}^{i} = \operatorname{Fr}_{\Sigma} \mathcal{I}(-, i)$  and  $\partial \mathbb{D}^{i}$  its boundary. The inclusions  $\partial \mathbb{D}_{\Sigma}^{i} \subseteq \mathbb{D}_{\Sigma}^{i}$  cofibrantly generate a weak factorisation system on the category of algebras.

#### Theorem

Free algebras on a computad are cofibrant.

#### Remark

This is the (cofibration, trivial fibration) wfs for Kan complexes and for strict  $\omega$ -categories.

Let  $\mathbb{D}^{i} = \operatorname{Fr}_{\Sigma} \mathcal{I}(-, i)$  and  $\partial \mathbb{D}^{i}$  its boundary. The inclusions  $\partial \mathbb{D}_{\Sigma}^{i} \subseteq \mathbb{D}_{\Sigma}^{i}$  cofibrantly generate a weak factorisation system on the category of algebras.

#### Theorem

Free algebras on a computad are cofibrant.

#### Theorem

The comonad  $Fr_{\Sigma} Und_{\Sigma} : Alg_{\Sigma} \to Alg_{\Sigma}$  is the universal cofibrant replacement<sup>7</sup> of the wfs.

#### Remark

This is the (cofibration, trivial fibration) wfs for Kan complexes and for strict  $\omega$ -categories.

<sup>7</sup>Garner, "Homomorphisms of higher categories"

Ioannis Markakis

Let  $\mathbb{D}^{i} = \operatorname{Fr}_{\Sigma} \mathcal{I}(-, i)$  and  $\partial \mathbb{D}^{i}$  its boundary. The inclusions  $\partial \mathbb{D}_{\Sigma}^{i} \subseteq \mathbb{D}_{\Sigma}^{i}$  cofibrantly generate a weak factorisation system on the category of algebras.

#### Theorem

Free algebras on a computad are cofibrant, and vice versa.

#### Theorem

The comonad  $Fr_{\Sigma} Und_{\Sigma} : Alg_{\Sigma} \to Alg_{\Sigma}$  is the universal cofibrant replacement<sup>7</sup> of the wfs.

#### Remark

This is the (cofibration, trivial fibration) wfs for Kan complexes and for strict  $\omega$ -categories.

<sup>7</sup>Garner, "Homomorphisms of higher categories"

Ioannis Markakis

## References

| Batanin, M. A. "Computads for finitary monads on globular sets". In: |
|----------------------------------------------------------------------|
| Higher Category Theory. Vol. 230. Contemporary Mathematics.          |
| American Mathematical Society, 1998.                                 |

- Bourke, J. and R. Garner. "Monads and theories". In: Advances in Mathematics 351 (2019). arXiv: 1805.04346.
- Bourke, J. and S. Henry. Algebraically cofibrant and fibrant object revisited. 2020. arXiv: 2005.05384.
- Dean, C. J., E. Finster, I. Markakis, D. Reutter, and J. Vicary. Computads for weak ω-categories as an inductive type. 2022. arXiv: 2208.08719.
- Garner, R. "Homomorphisms of higher categories". In: *Advances in Mathematics* 224.6 (2010). arXiv: 0810.4450.
- Street, R. "Limits indexed by category-valued 2-functors". In: Journal of Pure and Applied Algebra 8.2 (1976).