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Free Algebras

What does it mean for a mathematical structure to be free?

@ Structures are M-algebras and free

M
—> . .
C % Algm are in the image of Fy.
FrMM @ For some M, there are more general
< generating data for free algebras.
UndM

o Free strict 2-category monad?
_ 3
Comp)3" o Free w-category monad ,
e Monads on globular sets
e Monads over other presheaf topoi

2Street, “Limits indexed by category-valued 2-functors”
3Batanin, “Computads for finitary monads on globular sets”
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Computads for 2-categories

X2 @ A 2-graph X is a diagram satisfying

S, the globularity conditions

X ss = st ts = tt

s| |t

Xo
TR

[ ] e —— o [ ] ﬂ [ ]

NS J
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Computads for 2-categories

Xp —— X5 @ A 2-graph X is a diagram satisfying

s| |+ sl 1+ the globularity conditions

)21 SN ;2; ss = st ts = tt

s| |t sl s

)20 )20 @ The free 2-category on X consists

of formal composite and coherence
cells quotiented by the laws of
2-categories.
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@ The free 2-category on X consists
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Computads for 2-categories

@ A 2-computad X is a diagram
t satisfying the globularity conditions

ss = st ts = tt
X; —— X;

t . where X[ is the set of formal
S
s composites from Xj.
Xo

@ The free 2-category on X consists
of formal composite and coherence
cells quotiented by the laws of
2-categories.
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Computads for 2-categories

X2 > Xy @ A 2-computad X is a diagram
t . satisfying the globularity conditions
S
S
p ss = st ts = tt
Xy — X{
t . where X[ is the set of formal
S
s composites from Xj.
Xo @ The free 2-category on X consists

of formal composite and coherence
cells quotiented by the laws of
2-categories.

loannis Markakis Computads for Generalised Signatures YaMCATS 30 3/23



Free Monads

Monads are mathematical structures. When is a monad free?
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Free Monads

Monads are mathematical structures. When is a monad free?

It should correspond to a theory with no equations when C = [Z°P, Set].

@ weak w-cateogories

@ algebraic Kan complexes / quasicategories
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Monads are mathematical structures. When is a monad free?

It should correspond to a theory with no equations when C = [Z°P, Set].

@ weak w-cateogories
@ algebraic Kan complexes / quasicategories

o

A signature* over C = [Z°P, Set] is a presheaf ¥ € C of function symbols
with arity functions B, : ¥; — ob C satisfying for § : j — i that

Bs«f = Br

A\,

*Bourke and Garner, “Monads and theories”
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Algebras of a signature

Definition

A Y -algebra X is a presheaf X equipped with functions
fX.C(Bfr,X) = X;

for f € ¥; satisfying that 6* o f* = (§*F)* for § : j — i.

@ The forgetful functor Uy : Algs — C is strict monadic.
@ The free monad on X is My = Uy Fy.
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Algebras of a signature

Definition
A Y -algebra X is a presheaf X equipped with functions

fX.C(Bfr,X) = X;

for f € ¥; satisfying that 6* o f* = (§*F)* for § : j — i.

@ The forgetful functor Uy : Algs — C is strict monadic.
@ The free monad on ¥ is My = Us Fs.

Problem

Weak w-categories are not algebras of a signature, since the source of the
associator is not an 1-dimensional function symbol, but a composite of
them.
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Direct Categories

Definition
A direct category Z is a small category equipped with a dimension function
dim : obZ — Ord to the class of ordinals such that dimj < dim i for every

non-identity morphism § : j — .
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Direct Categories

A direct category Z is a small category equipped with a dimension function

dim : obZ — Ord to the class of ordinals such that dimj < dim i for every
non-identity morphism § : j — .

Example
@ Any discrete category S.
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Direct Categories

A direct category Z is a small category equipped with a dimension function

dim : obZ — Ord to the class of ordinals such that dimj < dim i for every
non-identity morphism § : j — .

Example

@ Any discrete category S.
@ The category G of globes

O] == 1] == 2] —= - ss=ts
‘ ' t st=tt
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Direct Categories

Definition

A direct category Z is a small category equipped with a dimension function
dim : obZ — Ord to the class of ordinals such that dimj < dim i for every
non-identity morphism § : j — .

| \

Example
@ Any discrete category S.
@ The category G of globes
@ The category A;y; of simplices and face maps.

8o %o %
o == =@ % o EG =0 (<))
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Direct Categories

A direct category Z is a small category equipped with a dimension function

dim : obZ — Ord to the class of ordinals such that dimj < dim i for every
non-identity morphism § : j — .

@ Any discrete category S.

@ The category G of globes

@ The category A;y; of simplices and face maps.

\

We denote by Z, the full subcategory on objects of dimension at most «
with the obvious dimension function.

.
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The inductive data

We define by transfinite recursion on a < sup{dimi : i €T}

e a class Sig,(Z) of (generalised) signatures of dimension «,
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The inductive data

We define by transfinite recursion on a < sup{dimi : i €T}
e a class Sig,(Z) of (generalised) signatures of dimension «,

e restriction functions Sig, (Z) ﬂ Sigg(Z) for B < a

@ an adjunction for every signature ¥ of dimension «

Cptd
[Z5P,Set] . 1 " Compy

ermy

tre
@ truncation functors Comps BN Compzﬁ for every 8 < «
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Signatures

Definition

A signature 2 of dimension « consists of

@ signatures ¥ 3 for 3 < a such that (Xg), = X,,
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Signatures

Definition

A signature 2 of dimension « consists of

@ signatures X g for § < a such that (Xg), = X,
@ sets X ; of function symbols for dimi = «,
@ for every function symbol f € ¥;,

e an arity Br € [Z°P, Set]
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Signatures

Definition

A signature 2 of dimension « consists of
@ signatures ¥ 3 for 3 < a such that (Xg), = X,,
@ sets X ; of function symbols for dimi = «,
@ for every function symbol f € ¥;,

e an arity Br € [Z°P, Set]
e for non-identity 6 : j — /, a boundary term

0'f € Term):dimﬁj Cptd):d;mj(trdimj Bf)

satisfying that (&')*(6*f) = (09")*f

The restriction functions are the obvious projections.
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Computads

A Y -computad C consists of

o ¥ g-computads Cs for B < a such that tr>? Cs = C,,
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Computads

A Y -computad C consists of

o ¥ g-computads Cs for B < a such that tr>? Cs = C,,
@ a set V,-C of generators for dimi = «,
o gluing functions V€ — Terms,, . j(Cdim;) for non-identity 0 : j — i
such that
(8')" 65 = o5y
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Computads

A Y -computad C consists of

o ¥ g-computads Cs for B < a such that tr>? Cs = C,,
@ a set V,-C of generators for dimi = «,
o gluing functions V€ — Terms,, . j(Cdim;) for non-identity 0 : j — i
such that
(8')" 65 = o5y

Each presheaf X : Zo” — Set defines a computad by
(Cptds X)g = Cptdy, trg X
yCptds Xy

Cptd X *
¢6 = N dim j © 0
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Definition
The lower dimensional terms of a computad C are those of the computads
Cs. The set Termy ; C for dimi = « is inductively generated by

@ var: \/,-C — Termy ; C
o comp : ) ¢cy. Compy(Cptdy Br, C) — Termy ; C

Terms form a presheaf by letting for 6 : j — i

5*(varv) = 6§(v)
0*(complf,7]) = Termzdiij(Td;mj)(é* f)
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Morphisms of computads

Definition

A morphism o : D — C consists of
o morphisms o5 : Dy — Cs for B < a such that tr° o = o,
e functions o; : VP — Termg ;(C) for dimi = « satisfying for 6 : j — i
that

Oj

> Termy ; C

ViD
le I

Odim j
Terms, ;D Terms,, . C
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Morphisms of computads

Definition

A morphism o : D — C consists of
o morphisms o5 : Dy — Cs for B < a such that tr° o = o,
e functions o; : VP — Termg ;(C) for dimi = « satisfying for 6 : j — i
that

Oj

> Termy ; C

ViD
le I

Odim j
Terms, ;D Terms,, . C

We will say that o : D — C is variable-to-variable when o3 are
variable-to-variable and o} factors via var.

loannis Markakis Computads for Generalised Signatures YaMCATS 30 12/23



Given a morphism o : C — D, we define composition and the action on
terms recursively by

oot = (ogoTg, Terms (o) o T;)

where

Terms j(o)(varv) = gi(v)
Terms j(0)(complf, 7]) = comp[f,o o 7]
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term adjunction

@ The unit includes generators into terms

ny.x : X — Termy Cptdg X

X — varXx
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The term adjunction

@ The unit includes generators into terms

ny.x : X — Termy Cptdg X

X = var x
@ The counit identifies terms with generators

ex,c : Cptdy Termy C — C
827C7B = Ezﬁzcﬁ

Cptdy Termy C
ex,c,i: Vi P E T = Terms C
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Algebras

Definition

The term monad (Mg, 75, ix) is the monad on [Za”, Set] induced by the
term adjunction. The category Algs is the category of My-algebras.

loannis Markakis Computads for Generalised Signatures YaMCATS 30 15/23



Algebras

Definition

The term monad (Mg, 75, ix) is the monad on [Za”, Set] induced by the
term adjunction. The category Algs is the category of My-algebras.

Algebras X = (X, u*) are pairs of a presheaf and a morphism
u® : Terms Cptdy X — X

satisfying two axioms.
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Algebras

Definition

The term monad (Mg, 75, ix) is the monad on [Za”, Set] induced by the
term adjunction. The category Algs is the category of My-algebras.

Algebras X = (X, u*) are pairs of a presheaf and a morphism
u® : Terms Cptdy X — X
satisfying two axioms. They gives rise for every f € ¥; to functions

5. [Z°P, Set](By, X) — X;
fX(T) = uX(comp[f, Cptdy 7))

and they are determined by them.
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Kan complexes

We will let ssSet = [A7?, Set] and

inj?

@ A[n] the representable semisimplicial set y
VAN
e — o
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Kan complexes

We will let ssSet = [A7?, Set] and

inj?

@ A[n] the representable semisimplicial set
e OA[n] its boundary / \4
o AX[n] its k-th horn
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Kan complexes

We will let ssSet = [Aic:g, Set] and
[

@ A[n] the representable semisimplicial set
e OA[n] its boundary / \1

o AK[n] its k-th horn * *

Definition
An algebraic semisimplicial Kan complex X is a semisimplicial set X
together with for n > 0 and 0 < k < n a choice of lift for

A<[n] —2— X

A
-
-
-
-
-
-

Aln]
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Kan complexes

We will let ssSet = [AF

inj» Set] and
@ A[n] the representable semisimplicial set y
e OA[n] its boundary / \1

o AK[n] its k-th horn * *

Definition

An algebraic semisimplicial Kan complex X is a semisimplicial set X
together with for n > 0 and 0 < k < n a choice of lift for

A<[n] —2— X .
l A facey p : ssSet(A"[n], X) — Xo—1

filly = ssSet(AX[n], X) — X,

Aln]
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Kan Complexes

Kan complexes are algebras of a signature defined by

Ykan,n] = {faceniik 1 0< k< n+ 1 U{fillk, : n>0, 0< k< n}

Bracey, ey = N[0 +1] 6" facey ny1 = var(dyd)

f ifo=94¢
Biil, , = \*[n] 5 filly = 4 kom0 O
7 ' var 6, otherwise.
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Kan Complexes

Kan complexes are algebras of a signature defined by

Ykan[n] = 1faceniik - 0< k< n+1}U{fillk, : n>0, 0< k < n}

Bfacek,n+1 = /\k[n + 1] o facek’,,H = var(5k6)

f n, f8=20
B, . = AK[n] Ffillg = o km O Ok
’ ’ var 6, otherwise.

Algebraic semisimplicial Kan complexes carry a model structure equivalent
to spaces®. We will discuss its cofibrations shortly.

®Bourke and Henry, Algebraically cofibrant and fibrant object revisited
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Globular Higher Categories

Definition

We let Glob = [G°P, Set] the category of globular sets. We let Bat the
family of globular sets representing the strict w-category monad.

e — o — @

e Y
W W
e —> 0 — O
AN
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Globular Higher Categories

Definition

We let Glob = [G°P, Set] the category of globular sets. We let Bat the
family of globular sets representing the strict w-category monad.

The signature ¥, 4t for weak cu—categories6 e —Se—S e

@ has no operations of dimension 0,
@ has as operations of dimension n+ 1 triples
(B, a, b) where
; ; o | o /{? °
e B € Bat of dimension at most n+ 1, RAA SRS
e a, b € Term,(B) that “cover” the
n-dimensional source and target of B
respectively, and have common source and
SPNaTe
target. o e o
NN

Dean et al., Computads for weak w-categories as an inductive type
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Computads as presheaves

The subcategory Compy" of variable-to-variable morphisms has a terminal

computad 1y.

Generators of the terminal computad represent the “shapes’ of generators

V= [ Compg'(lnl,C).
pev;™

in the sense that
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Computads as presheaves

The subcategory Compy" of variable-to-variable morphisms has a terminal

computad 1y.

Generators of the terminal computad represent the “shapes’ of generators

V= [ Compg'(lnl,C).
pev;™

in the sense that

Let Plexs the full subcategory of Compy:" on the computads |p|. The
subcategory inclusion induces an equivalence

Compy™" = [Plexs’, Set]
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Free Algebras

[Z°P, Set]

Compy Algs
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Free Algebras

[Z°P, Set]
o Ky is fully faithfull
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Free Algebras

[Z°P, Set]
o Ky is fully faithfull

e Cptdy™" is fully faithful
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Free Algebras

[Z°P, Set]
o Ky is fully faithfull

e Cptdy™" is fully faithful

@ Morphisms Fry C — X
amount to functions

VE = X

compatible with the
Frs gluing functions.
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Free Algebras

[Z°P, Set]
o Ky is fully faithfull

e Cptdy™" is fully faithful

@ Morphisms Fry C — X
amount to functions

VE = X
compatible with the
Frs gluing functions.
L
Und):
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Computads as cofibrant algebras

Let D = Fry Z(—, i) and 9D its boundary. The inclusions D& C DL
cofibrantly generate a weak factorisation system on the category of
algebras.

This is the (cofibration, trivial fibration) wfs for Kan complexes and for
strict w-categories.

loannis Markakis Computads for Generalised Signatures YaMCATS 30 23/23
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Computads as cofibrant algebras

Let D = Fry Z(—, i) and 9D its boundary. The inclusions D& C DL
cofibrantly generate a weak factorisation system on the category of
algebras.

Free algebras on a computad are cofibrant.

The comonad Fry Undy : Algs — Algs is the universal cofibrant
replacement’ of the wfs.

This is the (cofibration, trivial fibration) wfs for Kan complexes and for
strict w-categories.
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Computads as cofibrant algebras

Let D = Fry Z(—, i) and 9D its boundary. The inclusions D& C DL
cofibrantly generate a weak factorisation system on the category of
algebras.

Free algebras on a computad are cofibrant, and vice versa.

The comonad Fry Undy : Algs — Algs is the universal cofibrant
replacement’ of the wfs.

This is the (cofibration, trivial fibration) wfs for Kan complexes and for
strict w-categories.

"Garner, “Homomorphisms of higher categories”
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