Computads for Generalised Signatures

Ioannis Markakis ¹

YaMCATS 30

ONASSIS FOUNDATION

¹The speaker is being partially supported by the Onassis Foundation Scholarship ID: F ZQ 039-1/2020-2021

What does it mean for a mathematical structure to be free?

What does it mean for a mathematical structure to be free?

 $\bullet\,$ Structures are M-algebras and free are in the image of $F_M.$

What does it mean for a mathematical structure to be free?

- $\bullet\,$ Structures are M-algebras and free are in the image of $F_M.$
- For some M, there are more general generating data for free algebras.

What does it mean for a mathematical structure to be free?

- $\bullet\,$ Structures are M-algebras and free are in the image of $F_M.$
- For some M, there are more general generating data for free algebras.
 - Free strict 2-category monad²

²Street, "Limits indexed by category-valued 2-functors"

What does it mean for a mathematical structure to be free?

- $\bullet\,$ Structures are M-algebras and free are in the image of $F_M.$
- For some M, there are more general generating data for free algebras.
 - Free strict 2-category monad²
 - Free ω -category monad³

³Batanin, "Computads for finitary monads on globular sets"

²Street, "Limits indexed by category-valued 2-functors"

What does it mean for a mathematical structure to be free?

- $\bullet\,$ Structures are M-algebras and free are in the image of $F_M.$
- For some M, there are more general generating data for free algebras.
 - Free strict 2-category monad²
 - Free ω -category monad³
 - Monads on globular sets³

³Batanin, "Computads for finitary monads on globular sets"

²Street, "Limits indexed by category-valued 2-functors"

What does it mean for a mathematical structure to be free?

- $\bullet\,$ Structures are M-algebras and free are in the image of $F_M.$
- For some M, there are more general generating data for free algebras.
 - Free strict 2-category monad²
 - Free ω -category monad³
 - Monads on globular sets³
 - Monads over other presheaf topoi

³Batanin, "Computads for finitary monads on globular sets"

²Street, "Limits indexed by category-valued 2-functors"

 $\begin{array}{c} X_2 \\ s \\ \downarrow t \\ X_1 \\ s \\ \downarrow t \\ X_0 \end{array}$

• A 2-graph X is a diagram satisfying the *globularity conditions*

$$ss = st$$
 $ts = tt$

• A 2-graph X is a diagram satisfying the *globularity conditions*

$$ss = st$$
 $ts = tt$

• The free 2-category on X consists of formal composite and coherence cells quotiented by the laws of 2-categories.

• A 2-graph X is a diagram satisfying the *globularity conditions*

$$ss = st$$
 $ts = tt$

• A 2-computed X is a diagram satisfying the *globularity conditions*

$$ss = st$$
 $ts = tt$

where X_1^* is the set of formal composites from X_1 .

• The free 2-category on X consists of formal composite and coherence cells quotiented by the laws of 2-categories.

• A 2-computad X is a diagram satisfying the *globularity conditions*

$$ss = st$$
 $ts = tt$

where X_1^* is the set of formal composites from X_1 .

• The free 2-category on X consists of formal composite and coherence cells quotiented by the laws of 2-categories.

Monads are mathematical structures. When is a monad free?

Monads are mathematical structures. When is a monad free?

ldea

It should correspond to a theory with no equations when $\mathcal{C} = [\mathcal{I}^{op}, Set]$.

- weak ω -cateogories
- algebraic Kan complexes / quasicategories

Monads are mathematical structures. When is a monad free?

Idea

It should correspond to a theory with no equations when $\mathcal{C} = [\mathcal{I}^{op}, Set]$.

- weak ω -cateogories
- algebraic Kan complexes / quasicategories

Definition

A signature⁴ over $C = [\mathcal{I}^{op}, Set]$ is a presheaf $\Sigma \in C$ of function symbols with arity functions $B_{\bullet} : \Sigma_i \to ob C$ satisfying for $\delta : j \to i$ that

$$B_{\delta^* f} = B_f$$

⁴Bourke and Garner, "Monads and theories"

Ioannis Markakis

Algebras of a signature

Definition

A Σ -algebra X is a presheaf X equipped with functions

$$f^{\mathbb{X}}: \mathcal{C}(B_f, X) \to X_i$$

for $f \in \Sigma_i$ satisfying that $\delta^* \circ f^{\mathbb{X}} = (\delta^* f)^{\mathbb{X}}$ for $\delta : j \to i$.

- \bullet The forgetful functor $\mathsf{U}_\Sigma:\mathsf{Alg}_\Sigma\to \mathcal{C}$ is strict monadic.
- The free monad on Σ is $M_{\Sigma} = U_{\Sigma} F_{\Sigma}$.

Algebras of a signature

Definition

A Σ -algebra X is a presheaf X equipped with functions

$$f^{\mathbb{X}}: \mathcal{C}(B_f, X) \to X_i$$

for $f \in \Sigma_i$ satisfying that $\delta^* \circ f^{\mathbb{X}} = (\delta^* f)^{\mathbb{X}}$ for $\delta : j \to i$.

- \bullet The forgetful functor $\mathsf{U}_\Sigma:\mathsf{Alg}_\Sigma\to \mathcal{C}$ is strict monadic.
- The free monad on Σ is $M_{\Sigma} = U_{\Sigma} F_{\Sigma}$.

Problem

Weak ω -categories are not algebras of a signature, since the source of the associator is not an 1-dimensional function symbol, but a composite of them.

A direct category \mathcal{I} is a small category equipped with a dimension function dim : ob $\mathcal{I} \rightarrow$ Ord to the class of ordinals such that dim $j < \dim i$ for every non-identity morphism $\delta : j \rightarrow i$.

A direct category \mathcal{I} is a small category equipped with a dimension function dim : ob $\mathcal{I} \rightarrow$ Ord to the class of ordinals such that dim $j < \dim i$ for every non-identity morphism $\delta : j \rightarrow i$.

Example

• Any discrete category *S*.

A direct category \mathcal{I} is a small category equipped with a dimension function dim : ob $\mathcal{I} \rightarrow$ Ord to the class of ordinals such that dim $j < \dim i$ for every non-identity morphism $\delta : j \rightarrow i$.

Example

- Any discrete category S.
- The category $\mathbb G$ of globes

$$[0] \xrightarrow{s}{t} [1] \xrightarrow{s}{t} [2] \xrightarrow{s}{t} \cdots \qquad ss = ts$$
$$st = tt$$

A direct category \mathcal{I} is a small category equipped with a dimension function dim : ob $\mathcal{I} \rightarrow$ Ord to the class of ordinals such that dim $j < \dim i$ for every non-identity morphism $\delta : j \rightarrow i$.

Example

- Any discrete category S.
- \bullet The category $\mathbb G$ of globes
- The category Δ_{inj} of simplices and face maps.

$$[0] \xrightarrow{\delta_0} [1] \xrightarrow{\delta_0} [2] \xrightarrow{\delta_0} \cdots$$

$$\delta_i \delta_j = \delta_{j+1} \delta_i \quad (i \le j)$$

A direct category \mathcal{I} is a small category equipped with a dimension function dim : ob $\mathcal{I} \rightarrow$ Ord to the class of ordinals such that dim $j < \dim i$ for every non-identity morphism $\delta : j \rightarrow i$.

Example

- Any discrete category S.
- $\bullet\,$ The category $\mathbb G$ of globes
- The category Δ_{inj} of simplices and face maps.

Notation

We denote by \mathcal{I}_{α} the full subcategory on objects of dimension at most α with the obvious dimension function.

We define by transfinite recursion on $\alpha \leq \sup\{\dim i \ : \ i \in \mathcal{I}\}$

• a class $\operatorname{Sig}_{\alpha}(\mathcal{I})$ of (generalised) signatures of dimension α ,

We define by transfinite recursion on $\alpha \leq \sup\{\dim i : i \in \mathcal{I}\}$

- a class $\operatorname{Sig}_{\alpha}(\mathcal{I})$ of (generalised) signatures of dimension α ,
- restriction functions $\operatorname{Sig}_{\alpha}(\mathcal{I}) \xrightarrow{(-)_{\beta}} \operatorname{Sig}_{\beta}(\mathcal{I})$ for $\beta < \alpha$

We define by transfinite recursion on $\alpha \leq \sup\{\dim i : i \in \mathcal{I}\}$

- a class $\operatorname{Sig}_{\alpha}(\mathcal{I})$ of (generalised) signatures of dimension α ,
- restriction functions $\operatorname{Sig}_{\alpha}(\mathcal{I}) \xrightarrow{(-)_{\beta}} \operatorname{Sig}_{\beta}(\mathcal{I})$ for $\beta < \alpha$
- an adjunction for every signature Σ of dimension α

$$[\mathcal{I}^{\mathsf{op}}_{\alpha},\mathsf{Set}] \xrightarrow[]{\frac{\mathsf{Cptd}_{\Sigma}}{\bot}}_{\mathsf{Term}_{\Sigma}} \mathsf{Comp}_{\Sigma}$$

We define by transfinite recursion on $\alpha \leq \sup\{\dim i : i \in \mathcal{I}\}$

- a class $\operatorname{Sig}_{\alpha}(\mathcal{I})$ of (generalised) signatures of dimension α ,
- restriction functions $\operatorname{Sig}_{\alpha}(\mathcal{I}) \xrightarrow{(-)_{\beta}} \operatorname{Sig}_{\beta}(\mathcal{I})$ for $\beta < \alpha$
- \bullet an adjunction for every signature Σ of dimension α

$$[\mathcal{I}^{\mathsf{op}}_{\alpha},\mathsf{Set}] \xrightarrow[\mathsf{Term}_{\Sigma}]{\mathcal{I}} \mathsf{Comp}_{\Sigma}$$

• truncation functors $\operatorname{Comp}_{\Sigma} \xrightarrow{\operatorname{tr}_{\beta}^{\Sigma}} \operatorname{Comp}_{\Sigma_{\beta}}$ for every $\beta < \alpha$

A signature $\pmb{\Sigma}$ of dimension α consists of

• signatures Σ_{β} for $\beta < \alpha$ such that $(\Sigma_{\beta})_{\gamma} = \Sigma_{\gamma}$,

A signature Σ of dimension α consists of

- signatures Σ_{β} for $\beta < \alpha$ such that $(\Sigma_{\beta})_{\gamma} = \Sigma_{\gamma}$,
- sets Σ_i of function symbols for dim $i = \alpha$,

A signature $\pmb{\Sigma}$ of dimension α consists of

- signatures Σ_{β} for $\beta < \alpha$ such that $(\Sigma_{\beta})_{\gamma} = \Sigma_{\gamma}$,
- sets Σ_i of function symbols for dim $i = \alpha$,
- for every function symbol $f \in \Sigma_i$,

A signature $\pmb{\Sigma}$ of dimension α consists of

- signatures Σ_{β} for $\beta < \alpha$ such that $(\Sigma_{\beta})_{\gamma} = \Sigma_{\gamma}$,
- sets Σ_i of function symbols for dim $i = \alpha$,
- for every function symbol $f \in \Sigma_i$,
 - an arity $B_f \in [\mathcal{I}^{op}, \mathsf{Set}]$

A signature $\pmb{\Sigma}$ of dimension α consists of

- signatures Σ_{β} for $\beta < \alpha$ such that $(\Sigma_{\beta})_{\gamma} = \Sigma_{\gamma}$,
- sets Σ_i of function symbols for dim $i = \alpha$,
- for every function symbol $f \in \Sigma_i$,
 - an arity $B_f \in [\mathcal{I}^{op}, \mathsf{Set}]$
 - for non-identity $\delta:j\rightarrow i,$ a boundary term

$$\delta^* f \in \operatorname{Term}_{\Sigma_{\dim j}, j} \operatorname{Cptd}_{\Sigma_{\dim j}}(\operatorname{tr}_{\dim j} B_f)$$

satisfying that $(\delta')^*(\delta^* f) = (\delta\delta')^* f$

The restriction functions are the obvious projections.

Definition

A Σ -computad C consists of

•
$$\Sigma_{eta}$$
-computads C_{eta} for $eta < lpha$ such that $\operatorname{tr}_{\gamma}^{\Sigma_{eta}} C_{eta} = C_{\gamma}$,

Definition

A Σ -computad C consists of

- Σ_{β} -computads C_{β} for $\beta < \alpha$ such that $\operatorname{tr}_{\gamma}^{\Sigma_{\beta}} C_{\beta} = C_{\gamma}$,
- a set V_i^C of generators for dim $i = \alpha$,

Definition

A Σ -computad C consists of

- Σ_{β} -computads C_{β} for $\beta < \alpha$ such that $\operatorname{tr}_{\gamma}^{\Sigma_{\beta}} C_{\beta} = C_{\gamma}$,
- a set V_i^C of generators for dim $i = \alpha$,
- gluing functions $V_i^C \to \text{Term}_{\Sigma_{\dim j}, j}(C_{\dim j})$ for non-identity $\delta : j \to i$ such that

$$(\delta')^* \phi_{\delta}^{\mathsf{C}} = \phi_{\delta\delta'}^{\mathsf{C}}$$

Definition

A Σ -computad C consists of

- Σ_{β} -computads C_{β} for $\beta < \alpha$ such that $\operatorname{tr}_{\gamma}^{\Sigma_{\beta}} C_{\beta} = C_{\gamma}$,
- a set V_i^C of generators for dim $i = \alpha$,
- gluing functions $V_i^C \to \operatorname{Term}_{\Sigma_{\dim j}, j}(C_{\dim j})$ for non-identity $\delta: j \to i$ such that

$$(\delta')^*\phi^{\mathcal{C}}_{\delta} = \phi^{\mathcal{C}}_{\delta\delta'}$$

Each presheaf $X : \mathcal{I}_{\alpha}^{\mathsf{op}} \to \mathsf{Set}$ defines a computad by

$$(\operatorname{Cptd}_{\Sigma} X)_{eta} = \operatorname{Cptd}_{\Sigma_{eta}} \operatorname{tr}_{eta} X$$

 $V_i^{\operatorname{Cptd}_{\Sigma} X} = X_i$
 $\phi_{\delta}^{\operatorname{Cptd}_{\Sigma} X} = \eta_{\Sigma_{\dim j}} \circ \delta^*$

The lower dimensional terms of a computad *C* are those of the computads C_{β} . The set $\operatorname{Term}_{\Sigma,i} C$ for dim $i = \alpha$ is inductively generated by • var : $V_i^C \to \operatorname{Term}_{\Sigma,i} C$ • comp : $\sum_{f \in \Sigma_i} \operatorname{Comp}_{\Sigma}(\operatorname{Cptd}_{\Sigma} B_f, C) \to \operatorname{Term}_{\Sigma,i} C$

Terms form a presheaf by letting for $\delta: j \to i$

$$\delta^*(\operatorname{var} v) = \phi_{\delta}^{\mathcal{C}}(v)$$

$$\delta^*(\operatorname{comp}[f, \tau]) = \operatorname{Term}_{\Sigma_{\dim j}, j}(\tau_{\dim j})(\delta^* f)$$

A morphism $\sigma: D \to C$ consists of

- morphisms $\sigma_{\beta}: D_{\beta} \to C_{\beta}$ for $\beta < \alpha$ such that $\operatorname{tr}_{\gamma}^{\Sigma_{\beta}} \sigma_{\beta} = \sigma_{\gamma}$,
- functions $\sigma_i : V_i^D \to \operatorname{Term}_{\Sigma,i}(C)$ for dim $i = \alpha$ satisfying for $\delta : j \to i$ that

A morphism $\sigma: D \to C$ consists of

- morphisms $\sigma_{\beta}: D_{\beta} \to C_{\beta}$ for $\beta < \alpha$ such that $\operatorname{tr}_{\gamma}^{\Sigma_{\beta}} \sigma_{\beta} = \sigma_{\gamma}$,
- functions $\sigma_i : V_i^D \to \operatorname{Term}_{\Sigma,i}(C)$ for dim $i = \alpha$ satisfying for $\delta : j \to i$ that

We will say that $\sigma: D \to C$ is variable-to-variable when σ_{β} are variable-to-variable and σ_i factors via var.

Given a morphism $\sigma: \mathcal{C} \to \mathcal{D},$ we define composition and the action on terms recursively by

$$\sigma \circ \tau = (\sigma_{\beta} \circ \tau_{\beta}, \operatorname{Term}_{\Sigma,i}(\sigma) \circ \tau_i)$$

where

$$\mathsf{Term}_{\Sigma,i}(\sigma)(\mathsf{var}\,v) = \sigma_i(v)$$
$$\mathsf{Term}_{\Sigma,i}(\sigma)(\mathsf{comp}[f,\tau]) = \mathsf{comp}[f,\sigma\circ\tau]$$

• The unit includes generators into terms

 $\begin{array}{l} \eta_{\Sigma,X}: X \to \operatorname{\mathsf{Term}}_{\Sigma} \operatorname{\mathsf{Cptd}}_{\Sigma} X \\ x \mapsto \operatorname{\mathsf{var}} x \end{array}$

• The unit includes generators into terms

$$\begin{array}{l} \eta_{\Sigma,X}: X \to \operatorname{\mathsf{Term}}_{\Sigma} \operatorname{\mathsf{Cptd}}_{\Sigma} X \\ x \mapsto \operatorname{\mathsf{var}} x \end{array}$$

• The counit identifies terms with generators

$$\begin{split} \varepsilon_{\Sigma,C} &: \mathsf{Cptd}_{\Sigma} \operatorname{\mathsf{Term}}_{\Sigma} C \to C \\ \varepsilon_{\Sigma,C,\beta} &= \epsilon_{\Sigma_{\beta},C_{\beta}} \\ \varepsilon_{\Sigma,C,i} &: V_{i}^{\mathsf{Cptd}_{\Sigma} \operatorname{\mathsf{Term}}_{\Sigma} C} = \operatorname{\mathsf{Term}}_{\Sigma} C \end{split}$$

The term monad $(M_{\Sigma}, \eta_{\Sigma}, \mu_{\Sigma})$ is the monad on $[\mathcal{I}_{\alpha}^{op}, Set]$ induced by the term adjunction. The category Alg_{Σ} is the category of M_{Σ}-algebras.

The term monad $(M_{\Sigma}, \eta_{\Sigma}, \mu_{\Sigma})$ is the monad on $[\mathcal{I}_{\alpha}^{op}, Set]$ induced by the term adjunction. The category Alg_{Σ} is the category of M_{Σ} -algebras.

Algebras $\mathbb{X} = (X, u^{\mathbb{X}})$ are pairs of a presheaf and a morphism

$$u^{\mathbb{X}}$$
 : Term _{Σ} Cptd _{Σ} $X \to X$

satisfying two axioms.

The term monad $(M_{\Sigma}, \eta_{\Sigma}, \mu_{\Sigma})$ is the monad on $[\mathcal{I}_{\alpha}^{op}, Set]$ induced by the term adjunction. The category Alg_{Σ} is the category of M_{Σ} -algebras.

Algebras $\mathbb{X} = (X, u^{\mathbb{X}})$ are pairs of a presheaf and a morphism

$$u^{\mathbb{X}}$$
 : Term _{Σ} Cptd _{Σ} $X \to X$

satisfying two axioms. They gives rise for every $f \in \Sigma_i$ to functions

$$f^{\mathbb{X}} : [\mathcal{I}^{\mathsf{op}}_{\alpha}, \mathsf{Set}](B_f, X) \to X_i$$
$$f^{\mathbb{X}}(\tau) = u^{\mathbb{X}}(\mathsf{comp}[f, \mathsf{Cptd}_{\Sigma} \tau])$$

and they are determined by them.

Notation

We will let $ssSet = [\Delta_{inj}^{op}, Set]$ and

• $\Delta[n]$ the representable semisimplicial set

Notation

We will let $ssSet = [\Delta_{inj}^{op}, Set]$ and

- $\Delta[n]$ the representable semisimplicial set
- $\partial \Delta[n]$ its boundary

Notation

We will let $ssSet = [\Delta_{ini}^{op}, Set]$ and

- $\Delta[n]$ the representable semisimplicial set
- $\partial \Delta[n]$ its boundary
- $\Lambda^k[n]$ its k-th horn

Notation

We will let $ssSet = [\Delta_{inj}^{op}, Set]$ and

- $\Delta[n]$ the representable semisimplicial set
- $\partial \Delta[n]$ its boundary
- $\Lambda^k[n]$ its k-th horn

Definition

An algebraic semisimplicial Kan complex X is a semisimplicial set X together with for n > 0 and $0 \le k \le n$ a choice of lift for

$$\begin{array}{ccc}
\Lambda^{k}[n] & \stackrel{\sigma}{\longrightarrow} X \\
\downarrow & & \\
\Delta[n]
\end{array}$$

Notation

We will let $ssSet = [\Delta_{inj}^{op}, Set]$ and

- $\Delta[n]$ the representable semisimplicial set
- $\partial \Delta[n]$ its boundary
- $\Lambda^k[n]$ its k-th horn

Definition

An algebraic semisimplicial Kan complex X is a semisimplicial set X together with for n > 0 and $0 \le k \le n$ a choice of lift for

Kan complexes are algebras of a signature defined by

$$\Sigma_{\mathsf{Kan},[n]} = \{\mathsf{face}_{n+1,k} \ : \ 0 \le k \le n+1\} \cup \{\mathsf{fill}_{k,n} \ : \ n > 0, \ 0 \le k \le n\}$$

$$\begin{split} B_{\mathsf{face}_{k,n+1}} &= \Lambda^k[n+1] \qquad \delta^* \, \mathsf{face}_{k,n+1} = \mathsf{var}(\delta_k \delta) \\ B_{\mathsf{fill}_{k,n}} &= \Lambda^k[n] \qquad \delta^* \, \mathsf{fill}_{k,n} = \begin{cases} \mathsf{face}_{k,n}, & \text{if } \delta = \delta_k \\ \mathsf{var} \, \delta, & \text{otherwise.} \end{cases} \end{split}$$

Kan complexes are algebras of a signature defined by

$$\Sigma_{\mathsf{Kan},[n]} = \{\mathsf{face}_{n+1,k} \ : \ 0 \le k \le n+1\} \cup \{\mathsf{fill}_{k,n} \ : \ n > 0, \ 0 \le k \le n\}$$

$$\begin{split} B_{\mathsf{face}_{k,n+1}} &= \Lambda^k[n+1] & \delta^* \operatorname{face}_{k,n+1} = \operatorname{var}(\delta_k \delta) \\ B_{\mathsf{fill}_{k,n}} &= \Lambda^k[n] & \delta^* \operatorname{fill}_{k,n} = \begin{cases} \mathsf{face}_{k,n}, & \text{if } \delta = \delta_k \\ \operatorname{var} \delta, & \text{otherwise.} \end{cases} \end{split}$$

Remark

Algebraic semisimplicial Kan complexes carry a model structure equivalent to spaces⁵. We will discuss its cofibrations shortly.

⁵Bourke and Henry, Algebraically cofibrant and fibrant object revisited

We let $Glob = [\mathbb{G}^{op}, Set]$ the category of globular sets. We let Bat the family of globular sets representing the strict ω -category monad.

We let $Glob = [\mathbb{G}^{op}, Set]$ the category of globular sets. We let Bat the family of globular sets representing the strict ω -category monad.

The signature $\Sigma_{\omega \, cat}$ for weak ω -categories⁶

- has no operations of dimension 0,
- has as operations of dimension n + 1 triples (B, a, b) where
 - $B \in Bat$ of dimension at most n + 1,
 - a, b ∈ Term_n(B) that "cover" the n-dimensional source and target of B respectively, and have common source and target.

 $\bullet \underbrace{\overline{\psi}}_{\overline{\psi}} \bullet \underbrace{\overline{\psi}}_{\overline{\psi}} \bullet$

• 🐺 • 🐺 •

Lemma

The subcategory Comp $_{\Sigma}^{var}$ of variable-to-variable morphisms has a terminal computed $\mathbb{1}_{\Sigma}$.

Generators of the terminal computad represent the "shapes" of generators in the sense that

$$V_i^C \cong \prod_{p \in V_i^{\mathbb{1}_{\Sigma}}} \operatorname{Comp}_{\Sigma}^{\operatorname{var}}(|p|, C).$$

Lemma

The subcategory Comp $_{\Sigma}^{var}$ of variable-to-variable morphisms has a terminal computed $\mathbb{1}_{\Sigma}$.

Generators of the terminal computad represent the "shapes" of generators in the sense that

$$V_i^C \cong \coprod_{p \in V_i^{\mathbb{1}_{\Sigma}}} \operatorname{Comp}_{\Sigma}^{\operatorname{var}}(|p|, C).$$

Theorem

Let $Plex_{\Sigma}$ the full subcategory of $Comp_{\Sigma}^{var}$ on the computads |p|. The subcategory inclusion induces an equivalence

 $\mathsf{Comp}^{\mathsf{var}}_{\Sigma}\cong[\mathsf{Plex}^{\mathsf{op}}_{\Sigma},\mathsf{Set}]$

• K_{Σ} is fully faithfull

- K_{Σ} is fully faithfull
- Cptd $_{\Sigma}^{var}$ is fully faithful

- $\bullet~{\sf K}_{\Sigma}$ is fully faithfull
- Cptd $_{\Sigma}^{var}$ is fully faithful
- Morphisms $\operatorname{Fr}_{\Sigma} C \to \mathbb{X}$ amount to functions

$$V_i^C \to X_i$$

compatible with the gluing functions.

- $\bullet~{\sf K}_{\Sigma}$ is fully faithfull
- Cptd $_{\Sigma}^{var}$ is fully faithful
- Morphisms $\operatorname{Fr}_{\Sigma} C \to \mathbb{X}$ amount to functions

$$V_i^C \to X_i$$

compatible with the gluing functions.

Let $\mathbb{D}^i = \operatorname{Fr}_{\Sigma} \mathcal{I}(-, i)$ and $\partial \mathbb{D}^i$ its boundary. The inclusions $\partial \mathbb{D}^i_{\Sigma} \subseteq \mathbb{D}^i_{\Sigma}$ cofibrantly generate a weak factorisation system on the category of algebras.

Remark

Let $\mathbb{D}^{i} = \operatorname{Fr}_{\Sigma} \mathcal{I}(-, i)$ and $\partial \mathbb{D}^{i}$ its boundary. The inclusions $\partial \mathbb{D}_{\Sigma}^{i} \subseteq \mathbb{D}_{\Sigma}^{i}$ cofibrantly generate a weak factorisation system on the category of algebras.

Theorem

Free algebras on a computad are cofibrant.

Remark

Let $\mathbb{D}^{i} = \operatorname{Fr}_{\Sigma} \mathcal{I}(-, i)$ and $\partial \mathbb{D}^{i}$ its boundary. The inclusions $\partial \mathbb{D}_{\Sigma}^{i} \subseteq \mathbb{D}_{\Sigma}^{i}$ cofibrantly generate a weak factorisation system on the category of algebras.

Theorem

Free algebras on a computad are cofibrant.

Theorem

The comonad $Fr_{\Sigma} Und_{\Sigma} : Alg_{\Sigma} \to Alg_{\Sigma}$ is the universal cofibrant replacement⁷ of the wfs.

Remark

⁷Garner, "Homomorphisms of higher categories"

Let $\mathbb{D}^{i} = \operatorname{Fr}_{\Sigma} \mathcal{I}(-, i)$ and $\partial \mathbb{D}^{i}$ its boundary. The inclusions $\partial \mathbb{D}_{\Sigma}^{i} \subseteq \mathbb{D}_{\Sigma}^{i}$ cofibrantly generate a weak factorisation system on the category of algebras.

Theorem

Free algebras on a computad are cofibrant, and vice versa.

Theorem

The comonad $Fr_{\Sigma} Und_{\Sigma} : Alg_{\Sigma} \to Alg_{\Sigma}$ is the universal cofibrant replacement⁷ of the wfs.

Remark

⁷Garner, "Homomorphisms of higher categories"

References

T	Batanin, M. A. "Computads for finitary monads on globular sets". In:
	Higher Category Theory. Vol. 230. Contemporary Mathematics.
	American Mathematical Society, 1998.

- Bourke, J. and R. Garner. "Monads and theories". In: Advances in Mathematics 351 (2019). arXiv: 1805.04346.
- Bourke, J. and S. Henry. Algebraically cofibrant and fibrant object revisited. 2020. arXiv: 2005.05384.
- Dean, C. J., E. Finster, I. Markakis, D. Reutter, and J. Vicary. Computads for weak ω-categories as an inductive type. 2022. arXiv: 2208.08719.
- Garner, R. "Homomorphisms of higher categories". In: *Advances in Mathematics* 224.6 (2010). arXiv: 0810.4450.
- Street, R. "Limits indexed by category-valued 2-functors". In: *Journal* of Pure and Applied Algebra 8.2 (1976).