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Weak 𝜔-categories

Globular, weak 𝜔-categories [2, 8, 9] are an algebraic model of

(∞,∞)-categories. They are collections of cells equipped with an

essentially unique way to compose pasting diagrams.
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The operations of 𝜔-categories are generated by

▶ Each choice of compositions for the source and target of a pasting

diagram yields a composition operation for the pasting diagram.

▶ Any two operations over the same pasting diagram are equivalent.

The type theory Catt

Catt [6] is a dependent type theory, whose models are 𝜔-categories.
Catt has a type of objects ⋆ and a type of (higher) morphisms 𝑢→𝑣
for any pair of terms 𝑢,𝑣 of the same type. Terms are either variables,

or constructed by one of the following rules:

Γ ⊢ps 𝜕−Γ ⊢ 𝑢 ∶ 𝐴 𝜕+Γ ⊢ 𝑣 ∶ 𝐴
Γ ⊢ comp(Γ,𝑢→ 𝑣) ∶ 𝑢→ 𝑣

Γ ⊢ps Γ ⊢ 𝑢 ∶ 𝐴 Γ ⊢ 𝑣 ∶ 𝐴
Γ ⊢ coh(Γ,𝑢→ 𝑣) ∶ 𝑢→ 𝑣

∶ pasting diagram ∶ source/target operations

The source and target operations are required to to use all available

variables. Contexts of this type theory correspond to finite com-

putads [1, 5, 3], that is 𝜔-categories freely generated by a finite num-

ber of generators.

𝑓∗𝑔 ∶= comp(Γ1,𝑥 → 𝑧)
assoc(𝑓,𝑔,ℎ) ∶= coh(Γ2, (𝑓 ∗𝑔)∗ℎ→𝑓∗(𝑔 ∗ℎ))

ucomp(𝑎,𝑏,𝑐) ∶= comp(Γ3,𝑓 ∗𝑘→ℎ∗𝑙)

We can also build the Eckmann-Hilton operation

(𝑥 ∶ ⋆)(𝑎,𝑏 ∶ id𝑥→ id𝑥) ⊢ eh ∶ 𝑎 ∗𝑏 →𝑏∗𝑎.

Coinductive invertibility

Acell 𝑓∶ 𝑎 → 𝑏 is defined to be invertible [4] if there exists an inverse
cell 𝑓− ∶ 𝑏 → 𝑎 together with invertible cancellation witnesses

𝑢𝑓 ∶ 𝑓 ∗𝑓− → id(𝑎) 𝑣𝑓 ∶ 𝑓− ∗𝑓→ id(𝑏)

1 This is a coinductive definition. To show that a cell is invertible,

one needs to provide an infinite amount of higher cells.

Contributions

Our main contributions are the following:

▶ Every coherence cell is invertible.

▶ A composite of cells is invertible when the cells of maximal di-

mension are invertible.

▶ In a finite-dimensional computad, the converse also holds. More

precisely, a cell is invertible if and only if it only uses generators

of lower dimension.

These results extend those of Fujii, Hoshino and Maehara [7].

We provide an algorithm to compute an inverse and cancellation

witnesses for coherence cells and composites of invertible cells.

▶ Inverses and witnesses of coherence cells can be obtained from

the coherence rule.

▶ Inverses of composite cells can be obtained by composing in-

verses in the opposite order. Cancellation witnesses can be built

using associators, unitors and composites of cancellation wit-

nesses.

Example: Inverse of an unbiased composite

Provided 𝑎,𝑏,𝑐 are invertible, an inverse and cancellation witness

of ucomp(𝑎,𝑏,𝑐) can be computed by:
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Application

These techniques can be used to significantly reduce the proof obliga-

tions in the proof assistant Catt for 𝜔-categories, maintained by the

first author. The Eckmann-Hilton cell is invertible. Using automatic

computation of witnesses, we reduced the size of the program defin-

ing the cancellation witness of the Eckamnn-Hilton by 95% of its size.
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