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Weak w-categories are a globular, algebraic model of (oco,00)-categories.
- Globular sets are presheaves on the category of globes

, src , src , src srcosrc =srcotgt
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tgt tgt tgt tgtosrc =tgtotgt

- Weak w-categories are globular sets equipped with composition and coherence
operations, such that certain diagrams admit unique composite up to equivalence.
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Globular Pasting diagrams

Globular pasting diagrams are the arities of the operations of w-categories.
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(a) Globular cardinals (b) Zigzag sequences (c) Rooted, planar trees
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Computads are w-categories generated by freely adjoining cells.

- The set Cell,11(C) is generated inductively by

- There exists a cell varv for all ve Cy
- There exists a cell coh(T,u — v, o) for

u - T globular pasting diagram of dimI'<=n+1
var - u,ve Cellp(T) satisfying a “fullness” condition
—— Celly(C n

G € 2( ) - 0:T'— Cmorphism of computads

u - A\ Morphisms C— D map generators to cells
G <2 Celly(C)

Cell
u gSet < ™, Comp

Co Celly(C) AL
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What are weak w-categories?

Caty = AIgCeIIFree
An w-category X is a globular set X equipped with operations
COh?,U—'V[_] : gset(r)X) _’Xn+‘]

subject to source and target conditions. Morphisms X — Y are morphisms X — Y that
preserve the operations (strict functors).

A\ Computads embed fully faithfully into w-categories, allowing us to identify a
computad with the w-category it generates.



Opposites




Opposite globular sets

Recall that a globular set is a diagram of the form

src src src srcosrc =srcotgt
Xo § X1 § X5 §
tgt tgt tgt tgtosrc = tgtotgt

Given any subset w = Nsg of dimensions, we can define an involutive endofunctor
op: gSet — gSet

by swapping the source and target maps of the dimensions in w.



Our goal is to lift the opposites functor to w-categories.

wCat ——OE—> w Cat

| l

gSet RN gSet



Our goal is to lift the opposites functor to w-categories. As shown in the formal theory of
monads (Street 1972), lifts are in bijection to monad morphisms.

op
Cat ---+ wCat
@ @ — op': (CellFree)op = op(Cell Free)
l l compatible with unit and multiplication
gSet SN gSet



Our goal is to lift the opposites functor to w-categories. As shown in the formal theory of
monads (Street 1972), lifts are in bijection to monad morphisms.

op
Cat ---+ wCat
@ @ — op': (CellFree)op = op(Cell Free)
l l compatible with unit and multiplication
gSet SN gSet

By the mate correspondence for the adjunction op - op,

— op’: op(CellFree) = (Cell Free) op
compatible with unit and multiplication
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Opposite pasting diagrams

Key observation: Globular pasting diagrams are closed under op.
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Opposite pasting diagrams

Key observation: Globular pasting diagrams are closed under op.
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The construction of opposites

gSet free, Comp Celly gSet

A
op op| ‘\ op
I op

gSet —— Comp ——— gSet
Free Cell

op and op’ are defined together by
mutual structural induction

- The computad C°P has the generators of C

src/tgt

C, Celln(C) 22 Cell(COP)

- The morphism ¢°P: C°P — D°P consists of

Co & Cellp(Dn) 225 Celly (D°P)

- The natural transformation op’ is defined recursively

by

coh(I'°P, y°P — v°P g©P)

coh(T,u—v,0)°P =
coh(T°P, PP — (j°P, g°P)
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Suspension and hom globular sets

Definition
Globular sets are coinductively defined as graphs enriched in globular sets.

1



Suspension and hom globular sets

There exists a hom globular set X(x,y) for x,y € Xo
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Suspension and hom globular sets

There exists a hom globular set X(x,y) for x,y € Xo

f
i h
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g

@(T\h

The hom functor has a left adjoint, the suspension.

1



Lifting the adjunction

Our goal is to lift the opposites functor to w-categories.
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Lifting the adjunction

Our goal is to lift the opposites functor to w-categories. As shown in the formal theory of
monads (Street 1972), lifts are in bijection to monad morphisms.

wCat,. —l—lo—m—> w Cat
— Hom': (Cell Free) Hom = Hom(Cell, Free...)
l l compatible with unit and multiplication

gSet,, ﬂ) gSet

— 3" 3(CellFree) = (Cell, . Free, )X
compatible with unit and multiplication

Once we lift the right adjoint, we get a lift of the left adjoint as well (commuting with the
free functors) by the adjoint lifting theorem (Johnstone 1975).
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Suspending pasting diagrams

Key observation: Pasting diagrams are closed under the suspension functor
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Suspending pasting diagrams

Key observation: Pasting diagrams are closed under the suspension functor
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Suspending computads

gSet,, —% Comp,, —= gSet,,

7 4 NP

gSet —— Comp ———— gSet
Free Cell

T and ' are defined together by
mutual structural induction
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Suspending computads
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Suspending computads

G 25 Celly(=C
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Suspending computads

TN T

gSet —) Comp T} gSet

T and ' are defined together by
mutual structural induction

C1‘—>Ce 2(20)

Il

CQ;)CE (C)

{v_,vy} == Cellp(2C)
Source/Target is given by composition with %/

¥'(coh(T,u—v,0)) = coh(ZT, 2'u — 2'v, 20)

14
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Results and future directions

In summary:

- We have given an inductive description of computads and weak w-categories.
- We have constructed the opposites of those structures.

- We have lifted the suspension and hom to computads and w-categories.
Applications / Future directions:

- Understanding invertible cells and weak equivalences (Poster session)
+ Constructing cylinders and (co)cones,for w-categories
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